Md Shafiuddin, Gabriel William Prather, Wen Chi Huang, Jeffrey Ryan Anton, Andrew Lawrence Martin, Sydney Brianna Sillart, Jonathan Z Tang, Michael R Vittori, Michael J Prinsen, Jessica Jane Ninneman, Chandrashekhara Manithody, Jeffrey P Henderson, Alexander W Aleem, Ma Xenia Garcia Ilagan, William Howard McCoy
{"title":"Cutibacterium adaptation to life on humans provides a novel biomarker of C. acnes infections.","authors":"Md Shafiuddin, Gabriel William Prather, Wen Chi Huang, Jeffrey Ryan Anton, Andrew Lawrence Martin, Sydney Brianna Sillart, Jonathan Z Tang, Michael R Vittori, Michael J Prinsen, Jessica Jane Ninneman, Chandrashekhara Manithody, Jeffrey P Henderson, Alexander W Aleem, Ma Xenia Garcia Ilagan, William Howard McCoy","doi":"10.1101/2024.09.18.613542","DOIUrl":null,"url":null,"abstract":"The domestication of cattle provided Propionibacteriaceae the opportunity to adapt to human skin. These bacteria constitute a distinct genus (Cutibacterium), and a single species within that genus (C. acnes) dominates 25% of human skin. C. acnes protects humans from pathogen colonization, but it can also infect indwelling medical devices inserted through human skin. Proteins that help Cutibacteria live on our skin may also act as virulence factors during an opportunistic infection, like a shoulder periprosthetic joint infection (PJI). To better understand the evolution of this commensal and opportunistic pathogen, we sought to extensively characterize one of these proteins, RoxP. This secreted protein is only found in the Cutibacterium genus, helps C. acnes grow in oxic environments, and is required for C. acnes to colonize human skin. Structure-based sequence analysis of twenty-one RoxP orthologs (71-100% identity to C. acnes strain KPA171202 RoxP_1) revealed a high-degree of molecular surface conservation and helped identify a potential heme-binding interface. Biophysical evaluation of a subset of seven RoxP orthologs (71-100% identity) demonstrated that heme-binding is conserved. Computational modeling of these orthologs suggests that RoxP heme-binding is mediated by an invariant molecular surface composed of a surface-exposed tryptophan (W66), adjacent cationic pocket, and nearby potential heme axial ligands. Further, these orthologs were found to undergo heme-dependent oligomerization. To further probe the role of this protein in C. acnes biology, we developed four monoclonal anti-RoxP antibodies, assessed the binding of those antibodies to a subset of ten RoxP orthologs (71-100% identity), developed an anti-RoxP sandwich ELISA (sELISA) with sub-nanogram sensitivity, and adapted that sELISA to quantitate RoxP in human biofluids that can be infected by C. acnes (serum, synovial fluid, cerebrospinal fluid). This study expands our understanding of how an environmental bacterium evolved to live on humans, and the assays developed in this work can now be used to identify this organism when it gains access to sterile sites to cause opportunistic infections.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The domestication of cattle provided Propionibacteriaceae the opportunity to adapt to human skin. These bacteria constitute a distinct genus (Cutibacterium), and a single species within that genus (C. acnes) dominates 25% of human skin. C. acnes protects humans from pathogen colonization, but it can also infect indwelling medical devices inserted through human skin. Proteins that help Cutibacteria live on our skin may also act as virulence factors during an opportunistic infection, like a shoulder periprosthetic joint infection (PJI). To better understand the evolution of this commensal and opportunistic pathogen, we sought to extensively characterize one of these proteins, RoxP. This secreted protein is only found in the Cutibacterium genus, helps C. acnes grow in oxic environments, and is required for C. acnes to colonize human skin. Structure-based sequence analysis of twenty-one RoxP orthologs (71-100% identity to C. acnes strain KPA171202 RoxP_1) revealed a high-degree of molecular surface conservation and helped identify a potential heme-binding interface. Biophysical evaluation of a subset of seven RoxP orthologs (71-100% identity) demonstrated that heme-binding is conserved. Computational modeling of these orthologs suggests that RoxP heme-binding is mediated by an invariant molecular surface composed of a surface-exposed tryptophan (W66), adjacent cationic pocket, and nearby potential heme axial ligands. Further, these orthologs were found to undergo heme-dependent oligomerization. To further probe the role of this protein in C. acnes biology, we developed four monoclonal anti-RoxP antibodies, assessed the binding of those antibodies to a subset of ten RoxP orthologs (71-100% identity), developed an anti-RoxP sandwich ELISA (sELISA) with sub-nanogram sensitivity, and adapted that sELISA to quantitate RoxP in human biofluids that can be infected by C. acnes (serum, synovial fluid, cerebrospinal fluid). This study expands our understanding of how an environmental bacterium evolved to live on humans, and the assays developed in this work can now be used to identify this organism when it gains access to sterile sites to cause opportunistic infections.