Reversible modulation of critical electric fields for a field-induced ferroelectric effect with field-cycling in ZrO2 thin films†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Chemistry C Pub Date : 2024-09-06 DOI:10.1039/D4TC03024A
Jonghoon Shin, Dong Hoon Shin, Kyung Do Kim, Haengha Seo, Kun Hee Ye, Jeong Woo Jeon, Tae Kyun Kim, Heewon Paik, Haewon Song, Suk Hyun Lee, Jung-Hae Choi and Cheol Seong Hwang
{"title":"Reversible modulation of critical electric fields for a field-induced ferroelectric effect with field-cycling in ZrO2 thin films†","authors":"Jonghoon Shin, Dong Hoon Shin, Kyung Do Kim, Haengha Seo, Kun Hee Ye, Jeong Woo Jeon, Tae Kyun Kim, Heewon Paik, Haewon Song, Suk Hyun Lee, Jung-Hae Choi and Cheol Seong Hwang","doi":"10.1039/D4TC03024A","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the effects of field-cycling on the critical electric fields (<em>E</em><small><sub>t→PO</sub></small> and <em>E</em><small><sub>PO→t</sub></small>) of the field-induced ferroelectric (FFE) effect in atomic layer deposited ZrO<small><sub>2</sub></small> thin films, focusing on their reversibility and temperature dependence. High-field cycling decreases these critical fields, whereas subsequent lower-field cycling effectively rejuvenates them, challenging the previous report of their irreversibility. Elevated temperature experiments reveal that higher temperature increases the lower limit of <em>E</em><small><sub>t→PO</sub></small> reduction, corroborating the thermodynamic predictions of the Landau–Ginzburg–Devonshire (LGD) theory. The rejuvenation effect is also more pronounced at higher temperatures, further corroborating the LGD theory. This study highlights that these reversible transitions between polar and non-polar phases with high- and low-field cycling are a universal phenomenon in fluorite-structured materials, not limited to ferroelectric materials. These findings provide new insights into the field-cycling and temperature-dependent behavior of FFE thin films.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03024a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of field-cycling on the critical electric fields (Et→PO and EPO→t) of the field-induced ferroelectric (FFE) effect in atomic layer deposited ZrO2 thin films, focusing on their reversibility and temperature dependence. High-field cycling decreases these critical fields, whereas subsequent lower-field cycling effectively rejuvenates them, challenging the previous report of their irreversibility. Elevated temperature experiments reveal that higher temperature increases the lower limit of Et→PO reduction, corroborating the thermodynamic predictions of the Landau–Ginzburg–Devonshire (LGD) theory. The rejuvenation effect is also more pronounced at higher temperatures, further corroborating the LGD theory. This study highlights that these reversible transitions between polar and non-polar phases with high- and low-field cycling are a universal phenomenon in fluorite-structured materials, not limited to ferroelectric materials. These findings provide new insights into the field-cycling and temperature-dependent behavior of FFE thin films.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZrO2 薄膜中具有场循环的场诱导铁电效应临界电场的可逆调制
本研究探讨了场循环对原子层沉积 ZrO2 薄膜中场诱导铁电效应临界电场(Et→PO 和 EPO→t)的影响,重点是它们的可逆性和温度依赖性。高磁场循环降低了这些临界场,而随后的低磁场循环则有效地恢复了它们的活力,这对之前关于它们不可逆的报道提出了质疑。高温实验表明,较高的温度会增加 Et→PO 还原的下限,这证实了兰道-金兹堡-德文郡(LGD)理论的热力学预测。在较高温度下,返老还童效应也更加明显,进一步证实了 LGD 理论。这项研究强调,这些极性和非极性相在高低电场循环中的可逆转变是萤石结构材料中的普遍现象,并不局限于铁电材料。这些发现为了解 FFE 薄膜的场循环和温度依赖行为提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
期刊最新文献
Back cover Inside back cover Back cover Heat capacity and structural transition effect in polycrystalline kesterite† A special collection honoring Professor Thom Palstra, an exceptional scientist, leader and mentor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1