Toward Phonon-Limited Transport in Two-Dimensional Electronics by Oxygen-Free Fabrication

Subhrajit Mukherjee, Shuhua Wang, Dasari Venkatakrishnarao, Yaoju Tarn, Teymour Talha-Dean, Rainer Lee, Ivan A. Verzhbitskiy, Ding Huang, Abhishek Mishra, John Wellington John, Sarthak Das, Fabio Bussoloti, Thathsara D. Maddumapatabandi, Yee Wen Teh, Yee Sin Ang, Kuan Eng Johnson Goh, Chit Siong Lau
{"title":"Toward Phonon-Limited Transport in Two-Dimensional Electronics by Oxygen-Free Fabrication","authors":"Subhrajit Mukherjee, Shuhua Wang, Dasari Venkatakrishnarao, Yaoju Tarn, Teymour Talha-Dean, Rainer Lee, Ivan A. Verzhbitskiy, Ding Huang, Abhishek Mishra, John Wellington John, Sarthak Das, Fabio Bussoloti, Thathsara D. Maddumapatabandi, Yee Wen Teh, Yee Sin Ang, Kuan Eng Johnson Goh, Chit Siong Lau","doi":"arxiv-2409.08453","DOIUrl":null,"url":null,"abstract":"Future electronics require aggressive scaling of channel material thickness\nwhile maintaining device performance. Two-dimensional (2D) semiconductors are\npromising candidates, but despite over two decades of research, experimental\nperformance still lags theoretical expectations. Here, we develop an\noxygen-free approach to push the electrical transport of 2D field-effect\ntransistors toward the theoretical phonon-limited intrinsic mobility. We\nachieve record carrier mobilities of 91 (132) cm2V-1s-1 for mono- (bi-) layer\nMoS2 transistors on SiO2 substrate. Statistics from over 60 devices confirm\nthat oxygen-free fabrication enhances key figures of merit by more than an\norder of magnitude. While previous studies suggest that 2D transition metal\ndichalcogenides such as MoS2 and WS2 are stable in air, we show that short-term\nambient exposure can degrade their device performance through irreversible\noxygen chemisorption. This study emphasizes the criticality of avoiding oxygen\nexposure, offering guidance for device manufacturing for fundamental research\nand practical applications of 2D materials.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Future electronics require aggressive scaling of channel material thickness while maintaining device performance. Two-dimensional (2D) semiconductors are promising candidates, but despite over two decades of research, experimental performance still lags theoretical expectations. Here, we develop an oxygen-free approach to push the electrical transport of 2D field-effect transistors toward the theoretical phonon-limited intrinsic mobility. We achieve record carrier mobilities of 91 (132) cm2V-1s-1 for mono- (bi-) layer MoS2 transistors on SiO2 substrate. Statistics from over 60 devices confirm that oxygen-free fabrication enhances key figures of merit by more than an order of magnitude. While previous studies suggest that 2D transition metal dichalcogenides such as MoS2 and WS2 are stable in air, we show that short-term ambient exposure can degrade their device performance through irreversible oxygen chemisorption. This study emphasizes the criticality of avoiding oxygen exposure, offering guidance for device manufacturing for fundamental research and practical applications of 2D materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过无氧制造实现二维电子中的声子限制传输
未来的电子器件需要在保持器件性能的同时,积极增加沟道材料的厚度。二维(2D)半导体是很有希望的候选材料,但尽管经过二十多年的研究,实验性能仍然落后于理论预期。在这里,我们开发了一种无氧方法,将二维场效应晶体管的电传输推向理论上的声子限制本征迁移率。我们在二氧化硅衬底上实现了创纪录的 91 (132) cm2V-1s-1 的单(双)层 MoS2 晶体管载流子迁移率。来自 60 多个器件的统计数据证实,无氧制造将关键性能指标提高了一个数量级以上。以往的研究表明,MoS2 和 WS2 等二维过渡金属二钙化物在空气中是稳定的,而我们的研究则表明,通过不可逆的氧化学吸附作用,短期的环境暴露会降低它们的器件性能。这项研究强调了避免氧气暴露的重要性,为二维材料的基础研究和实际应用的器件制造提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission p-(001)NiO/n-(0001)ZnO Heterostructures based Ultraviolet Photodetectors Normal/inverse Doppler effect of backward volume magnetostatic spin waves Unattended field measurement of bird source level Fabrication of Ultra-Thick Masks for X-ray Phase Contrast Imaging at Higher Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1