Black Hole Zeckendorf Games

Caroline Cashman, Steven J. Miller, Jenna Shuffleton, Daeyoung Son
{"title":"Black Hole Zeckendorf Games","authors":"Caroline Cashman, Steven J. Miller, Jenna Shuffleton, Daeyoung Son","doi":"arxiv-2409.10981","DOIUrl":null,"url":null,"abstract":"Zeckendorf proved a remarkable fact that every positive integer can be\nwritten as a decomposition of non-adjacent Fibonacci numbers. Baird-Smith,\nEpstein, Flint, and Miller converted the process of decomposing a positive\ninteger into its Zeckendorf decomposition into a game, using the moves of $F_i\n+ F_{i-1} = F_{i+1}$ and $2F_i = F_{i+1} + F_{i-2}$, where $F_i$ is the\n$i$thFibonacci number. Players take turns applying these moves, beginning with\n$n$ pieces in the $F_1$ column. They showed that for $n \\neq 2$, Player 2 has a\nwinning strategy, though the proof is non-constructive, and a constructive\nsolution is unknown. We expand on this by investigating \"black hole'' variants of this game. The\nBlack Hole Zeckendorf game on $F_m$ is played with any $n$ but solely in\ncolumns $F_i$ for $i < m$. Gameplay is similar to the original Zeckendorf game,\nexcept any piece that would be placed on $F_i$ for $i \\geq m$ is locked out in\na ``black hole'' and removed from play. With these constraints, we analyze the\ngames with black holes on $F_3$ and $F_4$ and construct a solution for specific\nconfigurations, using a parity-stealing based non-constructive proof to lead to\na constructive one. We also examine a pre-game in which players take turns\nplacing down $n$ pieces in the outermost columns before the decomposition\nphase, and find constructive solutions for any $n$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zeckendorf proved a remarkable fact that every positive integer can be written as a decomposition of non-adjacent Fibonacci numbers. Baird-Smith, Epstein, Flint, and Miller converted the process of decomposing a positive integer into its Zeckendorf decomposition into a game, using the moves of $F_i + F_{i-1} = F_{i+1}$ and $2F_i = F_{i+1} + F_{i-2}$, where $F_i$ is the $i$thFibonacci number. Players take turns applying these moves, beginning with $n$ pieces in the $F_1$ column. They showed that for $n \neq 2$, Player 2 has a winning strategy, though the proof is non-constructive, and a constructive solution is unknown. We expand on this by investigating "black hole'' variants of this game. The Black Hole Zeckendorf game on $F_m$ is played with any $n$ but solely in columns $F_i$ for $i < m$. Gameplay is similar to the original Zeckendorf game, except any piece that would be placed on $F_i$ for $i \geq m$ is locked out in a ``black hole'' and removed from play. With these constraints, we analyze the games with black holes on $F_3$ and $F_4$ and construct a solution for specific configurations, using a parity-stealing based non-constructive proof to lead to a constructive one. We also examine a pre-game in which players take turns placing down $n$ pieces in the outermost columns before the decomposition phase, and find constructive solutions for any $n$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑洞泽肯多夫游戏
泽肯多夫证明了一个非凡的事实,即每个正整数都可以写成非相邻斐波那契数的分解数。贝尔德-史密斯、爱泼斯坦、弗林特和米勒利用 $F_i+ F_{i-1} = F_{i+1}$ 和 $F_i = F_{i+1}+ F_{i-2}$ 的移动,把把一个正整数分解成泽肯多夫分解数的过程转换成了一个游戏。+ F_{i-2}$,其中 $F_i$ 是第 i 个斐波纳契数。棋手轮流使用这些棋步,从 $F_1$ 列中的 $n$ 棋子开始。他们证明了对于 $n \neq 2$,棋手 2 有获胜的策略,尽管证明是非构造性的,而且构造性的解也是未知的。我们通过研究这个博弈的 "黑洞''变体对其进行扩展。关于 $F_m$ 的黑洞泽肯多夫(Zeckendorf)博弈可以用任意 $n$ 进行,但只在 $i < m$ 的列 $F_i$ 中进行。游戏玩法与原始的泽肯多夫博弈类似,只是任何在 $i \geq m$ 时被放在 $F_i$ 上的棋子都会被锁在 "黑洞 "中,并从游戏中移除。利用这些限制条件,我们分析了在 $F_3$ 和 $F_4$ 上有黑洞的对局,并为特定的配置构造了一个解,利用基于奇偶性偷取的非构造性证明引出一个构造性证明。我们还研究了在分解阶段之前棋手轮流在最外列放下 $n$ 棋子的预对局,并找到了任意 $n$ 的构造解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diophantine stability and second order terms On the structure of the Bloch--Kato Selmer groups of modular forms over anticyclotomic $\mathbf{Z}_p$-towers Systems of Hecke eigenvalues on subschemes of Shimura varieties Fitting Ideals of Projective Limits of Modules over Non-Noetherian Iwasawa Algebras Salem numbers less than the plastic constant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1