Single-step in situ synthesis of bimetallic catalysts via a gas-phase route: the case of PdZn–ZnO

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-09-13 DOI:10.1039/d4cy00807c
Andrija Kokanović, Dunja Pupavac, Stéphane Chenot, Stéphane Guilet, Igor M. Opsenica, Slavica Stankic
{"title":"Single-step in situ synthesis of bimetallic catalysts via a gas-phase route: the case of PdZn–ZnO","authors":"Andrija Kokanović, Dunja Pupavac, Stéphane Chenot, Stéphane Guilet, Igor M. Opsenica, Slavica Stankic","doi":"10.1039/d4cy00807c","DOIUrl":null,"url":null,"abstract":"In this study, we explore the catalytic activity of highly pure PdZn–ZnO nanopowder, synthesized <em>via</em> an innovative metal–organic chemical vapor synthesis (MOCVS) method. Unlike conventional methods that require post-synthesis treatments, this rapid, solvent-free synthesis produces a bimetallic nanocatalyst with a high surface area (<em>S</em><small><sub>BET</sub></small> ∼ 110 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) directly. X-ray diffraction (XRD) confirmed its high crystalline quality, identifying only PdZn-specific diffractions alongside the ZnO phase. High-resolution transmission electron microscopy (HRTEM) analysis revealed a single family of planes with an interplanar distance corresponding to PdZn (111) planes. Furthermore, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy using CO as a probe molecule (FTIR-CO), both conducted under ultra-high vacuum (UHV) conditions, unequivocally confirmed the presence of PdZn entities on the ZnO support. The catalytic performance of this one-step synthesized PdZn bimetallic catalyst was evaluated in the reduction of nitroarenes and hydrodebromination of arylbromides. The catalyst exhibited excellent activity in both reactions, with remarkable recyclability for the reduction of nitroarenes. Additionally, no significant decrease in yield was observed during scale-up tests. This study introduces a novel one-step approach for synthesizing bimetallic nanopowders, which can serve as highly active catalysts and model systems for surface science studies.","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cy00807c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explore the catalytic activity of highly pure PdZn–ZnO nanopowder, synthesized via an innovative metal–organic chemical vapor synthesis (MOCVS) method. Unlike conventional methods that require post-synthesis treatments, this rapid, solvent-free synthesis produces a bimetallic nanocatalyst with a high surface area (SBET ∼ 110 m2 g−1) directly. X-ray diffraction (XRD) confirmed its high crystalline quality, identifying only PdZn-specific diffractions alongside the ZnO phase. High-resolution transmission electron microscopy (HRTEM) analysis revealed a single family of planes with an interplanar distance corresponding to PdZn (111) planes. Furthermore, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy using CO as a probe molecule (FTIR-CO), both conducted under ultra-high vacuum (UHV) conditions, unequivocally confirmed the presence of PdZn entities on the ZnO support. The catalytic performance of this one-step synthesized PdZn bimetallic catalyst was evaluated in the reduction of nitroarenes and hydrodebromination of arylbromides. The catalyst exhibited excellent activity in both reactions, with remarkable recyclability for the reduction of nitroarenes. Additionally, no significant decrease in yield was observed during scale-up tests. This study introduces a novel one-step approach for synthesizing bimetallic nanopowders, which can serve as highly active catalysts and model systems for surface science studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过气相路线原位一步合成双金属催化剂:PdZn-ZnO 案例
在本研究中,我们探讨了通过创新的金属有机化学气相合成(MOCVS)方法合成的高纯度 PdZn-ZnO 纳米粉体的催化活性。与需要进行合成后处理的传统方法不同,这种快速、无溶剂的合成方法可直接制备出具有高比表面积(SBET ∼ 110 m2 g-1)的双金属纳米催化剂。X 射线衍射 (XRD) 证实了该催化剂的高结晶质量,在 ZnO 相旁边只发现了 PdZn 特有的衍射。高分辨率透射电子显微镜(HRTEM)分析表明,其平面间距与 PdZn (111) 平面一致。此外,在超高真空(UHV)条件下进行的 X 射线光电子能谱分析(XPS)和以 CO 为探针分子的傅立叶变换红外光谱分析(FTIR-CO)均明确证实了 ZnO 支持物上 PdZn 实体的存在。在硝基烯烃还原和芳基溴化物加氢脱溴反应中,对这种一步合成的 PdZn 双金属催化剂的催化性能进行了评估。催化剂在这两个反应中均表现出优异的活性,在还原硝基烯烃时具有显著的可回收性。此外,在放大试验中也没有观察到产率有明显下降。本研究介绍了一种一步合成双金属纳米粉体的新方法,它可作为高活性催化剂和表面科学研究的模型系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Hydrolysis of ammonia borane for green hydrogen production over a Pd/C3N4 nanocatalyst synthesized by electron beam irradiation Back cover Single-step in situ synthesis of bimetallic catalysts via a gas-phase route: the case of PdZn–ZnO The effect of polyunsaturation – insights into the hydroformylation of oleochemicals Exploring the impact of abnormal coordination in macrocyclic N-heterocyclic carbene ligands on bio-inspired iron epoxidation catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1