Fei Liu, Jiaqiang Li, Kunyu Chen, Yang Li, Mingyi Zhang, Chong Zhao, Chi Xiao, Yong Huan
{"title":"A Review of Multiphysics Coupling Mechanical Behavior of Titanium-Coated Heterogeneous Wing for Re-entry Hypersonic Vehicle","authors":"Fei Liu, Jiaqiang Li, Kunyu Chen, Yang Li, Mingyi Zhang, Chong Zhao, Chi Xiao, Yong Huan","doi":"10.1007/s11837-024-06878-8","DOIUrl":null,"url":null,"abstract":"<div><p>The titanium-coated alloy heterogeneous structure has been widely used in the manufacture of re-entry hypersonic vehicle wings. However, due to the extreme and complex hypersonic service environment, the strength of the Ti alloy matrix is easily reduced under the synergistic action of complex loads such as aerodynamic heat, vibration, corrosion, and noise. This results in a mismatch of structural strength at the interface structure in the titanium-coated alloy, leading to destruction of the wing aerodynamic shape. At the same time, multiple load synergies can also lead to defects such as cracks and holes in the surface coating, damaging wing structural integrity. In addition, under the combined action of frequency- and time-domain loads, the wing structure will also experience creep deformation, leading to fatigue–creep interaction, exacerbating the accumulation of wing damage, and posing a serious threat to the service safety of the re-entry hypersonic vehicle. Therefore, this paper first reviews current research hotspots of re-entry hypersonic vehicle technology, and then analyzes the strengthening–toughening mechanism, high-temperature fatigue behavior, high-temperature creep behavior, and the damage prediction model of the titanium-coated alloy’s heterogeneous structure. Finally, it summarizes and prospects future research directions.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 11","pages":"6302 - 6312"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06878-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The titanium-coated alloy heterogeneous structure has been widely used in the manufacture of re-entry hypersonic vehicle wings. However, due to the extreme and complex hypersonic service environment, the strength of the Ti alloy matrix is easily reduced under the synergistic action of complex loads such as aerodynamic heat, vibration, corrosion, and noise. This results in a mismatch of structural strength at the interface structure in the titanium-coated alloy, leading to destruction of the wing aerodynamic shape. At the same time, multiple load synergies can also lead to defects such as cracks and holes in the surface coating, damaging wing structural integrity. In addition, under the combined action of frequency- and time-domain loads, the wing structure will also experience creep deformation, leading to fatigue–creep interaction, exacerbating the accumulation of wing damage, and posing a serious threat to the service safety of the re-entry hypersonic vehicle. Therefore, this paper first reviews current research hotspots of re-entry hypersonic vehicle technology, and then analyzes the strengthening–toughening mechanism, high-temperature fatigue behavior, high-temperature creep behavior, and the damage prediction model of the titanium-coated alloy’s heterogeneous structure. Finally, it summarizes and prospects future research directions.
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.