Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries

Hua Zhang, Tong Zeng, Jiale Ma, Yue Jiang, Yang Huang, Yuxin Cheng, Haifeng Ye, Cuiyun Zeng, Chenghui Zeng, Minshen Zhu, Shuiliang Chen
{"title":"Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries","authors":"Hua Zhang, Tong Zeng, Jiale Ma, Yue Jiang, Yang Huang, Yuxin Cheng, Haifeng Ye, Cuiyun Zeng, Chenghui Zeng, Minshen Zhu, Shuiliang Chen","doi":"10.1002/sstr.202400181","DOIUrl":null,"url":null,"abstract":"Developing electrocatalysts that exhibit exceptional activity without relying on noble metals, all while ensuring high efficiency and durability for the oxygen reduction and evolution reactions, poses a challenging yet highly desired task. Monodispersed nanoparticles on a conductive framework through strong metal–support interactions are known to show excellent catalytic performance. Herein, monodispersed iron selenide embedded in a carbon nanotube network is synthesized. Graphitic carbon shells enclosing monodispersed iron selenide address the primary challenge of nanoparticle catalysts—aggregation and corrosion of nanoparticles over repeated oxygen redox reactions. By amplifying the interaction of Fe with carbon nanotubes, the heterogeneous catalyst forms highly active centers for oxygen redox reaction from the coordinated iron atoms, along with conductive iron–nitrogen–carbon nanotube pathways for rapid charge transfer. As a result, the heterogeneous catalyst exhibits superior activity for both oxygen reduction (<i>E</i><sub>1/2</sub> = 0.88 V) and oxygen evolution (<i>η</i> = 360 mV@10 mA cm<sup>−2</sup>) and excellent stability of negligible degradation over 5000 cycles. The overall catalytic performance surpasses the noble metals. Therefore, rechargeable zinc–air batteries using the heterogeneous catalyst exhibit a high power density of 130.9 mW cm<sup>−2</sup>, excellent round-trip efficiency of ≈70%, and cycling stability for over 1100 h at 10 mA cm<sup>−2</sup>.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing electrocatalysts that exhibit exceptional activity without relying on noble metals, all while ensuring high efficiency and durability for the oxygen reduction and evolution reactions, poses a challenging yet highly desired task. Monodispersed nanoparticles on a conductive framework through strong metal–support interactions are known to show excellent catalytic performance. Herein, monodispersed iron selenide embedded in a carbon nanotube network is synthesized. Graphitic carbon shells enclosing monodispersed iron selenide address the primary challenge of nanoparticle catalysts—aggregation and corrosion of nanoparticles over repeated oxygen redox reactions. By amplifying the interaction of Fe with carbon nanotubes, the heterogeneous catalyst forms highly active centers for oxygen redox reaction from the coordinated iron atoms, along with conductive iron–nitrogen–carbon nanotube pathways for rapid charge transfer. As a result, the heterogeneous catalyst exhibits superior activity for both oxygen reduction (E1/2 = 0.88 V) and oxygen evolution (η = 360 mV@10 mA cm−2) and excellent stability of negligible degradation over 5000 cycles. The overall catalytic performance surpasses the noble metals. Therefore, rechargeable zinc–air batteries using the heterogeneous catalyst exhibit a high power density of 130.9 mW cm−2, excellent round-trip efficiency of ≈70%, and cycling stability for over 1100 h at 10 mA cm−2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单分散硒化铁纳米粒子与碳纳米管结合用于高可逆锌-空气电池
开发无需依赖贵金属就能表现出卓越活性的电催化剂,同时确保氧气还原和进化反应的高效性和耐久性,是一项极具挑战性但又非常令人期待的任务。众所周知,通过金属与支撑物之间的强相互作用,导电框架上的单分散纳米粒子可表现出卓越的催化性能。本文合成了嵌入碳纳米管网络的单分散硒化铁。包覆单分散硒化铁的石墨碳壳解决了纳米颗粒催化剂的主要难题--纳米颗粒在反复的氧氧化还原反应中发生聚集和腐蚀。通过放大铁与碳纳米管的相互作用,这种异质催化剂从配位铁原子中形成了氧氧化还原反应的高活性中心,同时还形成了铁-氮-碳纳米管的导电通道,以实现电荷的快速转移。因此,这种异质催化剂在氧还原(E1/2 = 0.88 V)和氧进化(η = 360 mV@10 mA cm-2)方面都表现出卓越的活性,而且稳定性极佳,在 5000 次循环中降解几乎可以忽略不计。总体催化性能超过了贵金属。因此,使用这种异质催化剂的锌-空气充电电池具有 130.9 mW cm-2 的高功率密度、≈70% 的出色往返效率以及在 10 mA cm-2 下超过 1100 小时的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Mesoporous Silica Nanoparticle Grafted Polypropylene Membrane toward Long-Term Efficient Oxygenation Thermal Methanol Synthesis from CO2 Using Cu/ZnO Catalysts: Insights from First-Principles Calculations Modulating Alkyl Groups in Copolymer to Control Ion Transport in Electrolyte-Gated Organic Transistors for Neuromorphic Computing Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries Clustered VCoCOx Nanosheets Anchored on MXene–Ti3C2@NF as a Superior Bifunctional Electrocatalyst for Alkaline Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1