Multifaceted neuroprotective approach of Trolox in Alzheimer's disease mouse model: targeting Aβ pathology, neuroinflammation, oxidative stress, and synaptic dysfunction

IF 4.2 3区 医学 Q2 NEUROSCIENCES Frontiers in Cellular Neuroscience Pub Date : 2024-09-18 DOI:10.3389/fncel.2024.1453038
Muhammad Tahir, Min Hwa Kang, Tae Ju Park, Jawad Ali, Kyonghwan Choe, Jun Sung Park, Myeong Ok Kim
{"title":"Multifaceted neuroprotective approach of Trolox in Alzheimer's disease mouse model: targeting Aβ pathology, neuroinflammation, oxidative stress, and synaptic dysfunction","authors":"Muhammad Tahir, Min Hwa Kang, Tae Ju Park, Jawad Ali, Kyonghwan Choe, Jun Sung Park, Myeong Ok Kim","doi":"10.3389/fncel.2024.1453038","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is a progressive neurodegenerative disorder pathologically characterized by the deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. The accumulation of these aggregated proteins causes memory and synaptic dysfunction, neuroinflammation, and oxidative stress. This research study is significant as it aims to assess the neuroprotective properties of vitamin E (VE) analog Trolox in an Aβ<jats:sub>1 − 42</jats:sub>-induced AD mouse model. Aβ<jats:sub>1 − 42</jats:sub> 5μL/5min/mouse was injected intracerebroventricularly (i.c.v.) into wild-type adult mice brain to induce AD-like neurotoxicity. For biochemical analysis, Western blotting and confocal microscopy were performed. Remarkably, intraperitoneal (i.p.) treatment of Trolox (30 mg/kg/mouse for 2 weeks) reduced the AD pathology by reducing the expression of Aβ, phosphorylated tau (p-tau), and β-site amyloid precursor protein cleaving enzyme1 (BACE1) in both cortex and hippocampus regions of mice brain. Furthermore, Trolox-treatment decreased neuroinflammation by inhibiting Toll-like receptor 4 (TLR4), phosphorylated nuclear factor-κB (pNF-κB) and interleukin-1β (IL-1β), and other inflammatory biomarkers of glial cells [ionized calcium-binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP)]. Moreover, Trolox reduced oxidative stress by enhancing the expression of nuclear factor erythroid-related factor 2 (NRF2) and heme oxygenase 1 (HO1). Similarly, Trolox-induced synaptic markers, including synaptosomal associated protein 23 (SNAP23), synaptophysin (SYN), and post-synaptic density protein 95 (PSD-95), and memory functions in AD mice. Our findings could provide a useful and novel strategy for investigating new medications to treat AD-associated neurodegenerative diseases.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"99 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2024.1453038","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder pathologically characterized by the deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. The accumulation of these aggregated proteins causes memory and synaptic dysfunction, neuroinflammation, and oxidative stress. This research study is significant as it aims to assess the neuroprotective properties of vitamin E (VE) analog Trolox in an Aβ1 − 42-induced AD mouse model. Aβ1 − 42 5μL/5min/mouse was injected intracerebroventricularly (i.c.v.) into wild-type adult mice brain to induce AD-like neurotoxicity. For biochemical analysis, Western blotting and confocal microscopy were performed. Remarkably, intraperitoneal (i.p.) treatment of Trolox (30 mg/kg/mouse for 2 weeks) reduced the AD pathology by reducing the expression of Aβ, phosphorylated tau (p-tau), and β-site amyloid precursor protein cleaving enzyme1 (BACE1) in both cortex and hippocampus regions of mice brain. Furthermore, Trolox-treatment decreased neuroinflammation by inhibiting Toll-like receptor 4 (TLR4), phosphorylated nuclear factor-κB (pNF-κB) and interleukin-1β (IL-1β), and other inflammatory biomarkers of glial cells [ionized calcium-binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP)]. Moreover, Trolox reduced oxidative stress by enhancing the expression of nuclear factor erythroid-related factor 2 (NRF2) and heme oxygenase 1 (HO1). Similarly, Trolox-induced synaptic markers, including synaptosomal associated protein 23 (SNAP23), synaptophysin (SYN), and post-synaptic density protein 95 (PSD-95), and memory functions in AD mice. Our findings could provide a useful and novel strategy for investigating new medications to treat AD-associated neurodegenerative diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三氯氧烷在阿尔茨海默病小鼠模型中的多方面神经保护方法:针对 Aβ 病理学、神经炎症、氧化应激和突触功能障碍
阿尔茨海默病(AD)是一种进行性神经退行性疾病,其病理特征是淀粉样 beta(Aβ)斑块和神经纤维缠结(NFT)在大脑中沉积。这些聚集蛋白的积累会导致记忆和突触功能障碍、神经炎症和氧化应激。这项研究旨在评估维生素 E(VE)类似物 Trolox 在 Aβ1 - 42 诱导的注意力缺失症小鼠模型中的神经保护特性,因此意义重大。向野生型成年小鼠脑内注射Aβ1 - 42 5μL/5min/只,诱导AD样神经毒性。生化分析采用了 Western 印迹和共聚焦显微镜。值得注意的是,腹腔注射曲环毒素(30 毫克/千克/只小鼠,连续注射 2 周)可减少小鼠大脑皮层和海马区 Aβ、磷酸化 tau(p-tau)和 β 位淀粉样前体蛋白裂解酶 1(BACE1)的表达,从而减轻 AD 的病理变化。此外,通过抑制 Toll 样受体 4(TLR4)、磷酸化核因子-κB(pNF-κB)和白细胞介素-1β(IL-1β)以及神经胶质细胞的其他炎症生物标志物[离子化钙结合适配分子 1(Iba1)和神经胶质纤维酸性蛋白(GFAP)],Trolox 治疗可降低神经炎症。此外,三环醇还能通过增强核因子红细胞相关因子 2(NRF2)和血红素加氧酶 1(HO1)的表达来减少氧化应激。同样,曲洛毒素还能诱导突触标记物,包括突触体相关蛋白 23(SNAP23)、突触素(SYN)和突触后密度蛋白 95(PSD-95),并增强 AD 小鼠的记忆功能。我们的发现可为研究治疗AD相关神经退行性疾病的新药提供一种有用的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
3.80%
发文量
627
审稿时长
6-12 weeks
期刊介绍: Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Does age protect against loss of tonotopy after acute deafness in adulthood? Panaroma of microglia in traumatic brain injury: a bibliometric analysis and visualization study during 2000-2023. A sexually dimorphic signature of activity-dependent BDNF signaling on the intrinsic excitability of pyramidal neurons in the prefrontal cortex. Outward depolarization of the microglia mitochondrial membrane potential following lipopolysaccharide exposure: a novel screening tool for microglia metabolomics. Synaptopodin: a key regulator of Hebbian plasticity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1