VOMTC: Vision Objects for Millimeter and Terahertz Communications

Sunwoo Kim, Yongjun Ahn, Daeyoung Park, Byonghyo Shim
{"title":"VOMTC: Vision Objects for Millimeter and Terahertz Communications","authors":"Sunwoo Kim, Yongjun Ahn, Daeyoung Park, Byonghyo Shim","doi":"arxiv-2409.09330","DOIUrl":null,"url":null,"abstract":"Recent advances in sensing and computer vision (CV) technologies have opened\nthe door for the application of deep learning (DL)-based CV technologies in the\nrealm of 6G wireless communications. For the successful application of this\nemerging technology, it is crucial to have a qualified vision dataset tailored\nfor wireless applications (e.g., RGB images containing wireless devices such as\nlaptops and cell phones). An aim of this paper is to propose a large-scale\nvision dataset referred to as Vision Objects for Millimeter and Terahertz\nCommunications (VOMTC). The VOMTC dataset consists of 20,232 pairs of RGB and\ndepth images obtained from a camera attached to the base station (BS), with\neach pair labeled with three representative object categories (person, cell\nphone, and laptop) and bounding boxes of the objects. Through experimental\nstudies of the VOMTC datasets, we show that the beamforming technique\nexploiting the VOMTC-trained object detector outperforms conventional\nbeamforming techniques.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in sensing and computer vision (CV) technologies have opened the door for the application of deep learning (DL)-based CV technologies in the realm of 6G wireless communications. For the successful application of this emerging technology, it is crucial to have a qualified vision dataset tailored for wireless applications (e.g., RGB images containing wireless devices such as laptops and cell phones). An aim of this paper is to propose a large-scale vision dataset referred to as Vision Objects for Millimeter and Terahertz Communications (VOMTC). The VOMTC dataset consists of 20,232 pairs of RGB and depth images obtained from a camera attached to the base station (BS), with each pair labeled with three representative object categories (person, cell phone, and laptop) and bounding boxes of the objects. Through experimental studies of the VOMTC datasets, we show that the beamforming technique exploiting the VOMTC-trained object detector outperforms conventional beamforming techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VOMTC:毫米波和太赫兹通信视觉对象
传感和计算机视觉(CV)技术的最新进展为基于深度学习(DL)的 CV 技术在 6G 无线通信领域的应用打开了大门。要成功应用这一新兴技术,关键是要有适合无线应用的合格视觉数据集(例如,包含笔记本电脑和手机等无线设备的 RGB 图像)。本文的目的之一是提出一个大型视觉数据集,即毫米波和太赫兹通信视觉对象(VOMTC)。VOMTC 数据集由 20,232 对 RGB 和深度图像组成,这些图像来自基站(BS)上的摄像头,每对图像都标有三个代表性物体类别(人物、手机和笔记本电脑)和物体的边界框。通过对 VOMTC 数据集的实验研究,我们发现利用 VOMTC 训练的物体检测器的波束成形技术优于传统的波束成形技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CEF: Connecting Elaborate Federal QKD Networks Age-of-Information and Energy Optimization in Digital Twin Edge Networks Blockchain-Enabled IoV: Secure Communication and Trustworthy Decision-Making Micro-orchestration of RAN functions accelerated in FPGA SoC devices LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1