Hybrid Triboelectric–Electromagnetic Nanogenerator Based on a Noncontact Pendulum Structure for Low-Frequency Vibration Monitoring and Energy Harvesting
{"title":"Hybrid Triboelectric–Electromagnetic Nanogenerator Based on a Noncontact Pendulum Structure for Low-Frequency Vibration Monitoring and Energy Harvesting","authors":"Xiangming Gao, Mingkun Huang, Yongju Wang, Shijie Zhang","doi":"10.1021/acsaelm.4c01226","DOIUrl":null,"url":null,"abstract":"Toward advancing energy sustainability, collecting low-frequency mechanical vibration energy from the environment has become an important research area. This paper introduces the design and implementation of a noncontact pendulum-structured hybrid triboelectric–electromagnetic nanogenerator (NCP-HNG) for monitoring low-frequency vibrations, continuously collecting low-frequency mechanical energy, and converting this energy into electricity. Design of the pendulum structure allows the generator to efficiently capture vibrations under low-frequency conditions, thus improving energy conversion efficiency and enabling more effective environmental energy harvesting. Through optimized design and energy management circuits, the NCP-HNG exhibits efficient charging, continuously collecting energy from low-frequency vibration environments and showing charging of a 100 mAh lithium battery to 3.30 V in just 12 min. The use of noncontact mode significantly reduces material wear, providing the device with a longer life span. Consequently, it offers a reliable self-powered energy solution for wireless sensor networks, health monitoring devices, and infrastructure health monitoring, among other fields.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c01226","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Toward advancing energy sustainability, collecting low-frequency mechanical vibration energy from the environment has become an important research area. This paper introduces the design and implementation of a noncontact pendulum-structured hybrid triboelectric–electromagnetic nanogenerator (NCP-HNG) for monitoring low-frequency vibrations, continuously collecting low-frequency mechanical energy, and converting this energy into electricity. Design of the pendulum structure allows the generator to efficiently capture vibrations under low-frequency conditions, thus improving energy conversion efficiency and enabling more effective environmental energy harvesting. Through optimized design and energy management circuits, the NCP-HNG exhibits efficient charging, continuously collecting energy from low-frequency vibration environments and showing charging of a 100 mAh lithium battery to 3.30 V in just 12 min. The use of noncontact mode significantly reduces material wear, providing the device with a longer life span. Consequently, it offers a reliable self-powered energy solution for wireless sensor networks, health monitoring devices, and infrastructure health monitoring, among other fields.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.