{"title":"The Role of Interface Band Alignment in Epitaxial SrTiO3/GaAs Heterojunctions","authors":"Shaked Caspi, Maria Baskin, Sergey Shay Shusterman, Di Zhang, Aiping Chen, Doron Cohen-Elias, Noam Sicron, Moti Katz, Eilam Yalon, Nini Pryds, Lior Kornblum","doi":"10.1021/acsaelm.4c01150","DOIUrl":null,"url":null,"abstract":"Correlated oxides are known to have remarkable properties, with a range of electronic, magnetic, optoelectronic, and photonic functionalities. A key ingredient in realizing these properties into practical technology is the effective and scalable integration of oxides with conventional semiconductors. Unlocking the full spectrum of functionality requires atomically abrupt oxide–semiconductor interfaces and intimate knowledge of their potential landscape and charge transport. In this study, we investigated the electrical properties of epitaxial SrTiO<sub>3</sub>/GaAs heterostructures by examining the band alignment and transport behavior at the interface. We employ X-ray photoelectron spectroscopy (XPS) to measure the barriers for electrons and holes across the interface and, through them, explain the transport behavior for junctions with n- and p-type GaAs. We further show qualitative evidence of the strong photoresponse of these structures, illustrating the potential of these structures in optoelectronic devices. These results establish the fundamental groundwork for utilizing these interfaces toward new devices and define their design space.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c01150","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Correlated oxides are known to have remarkable properties, with a range of electronic, magnetic, optoelectronic, and photonic functionalities. A key ingredient in realizing these properties into practical technology is the effective and scalable integration of oxides with conventional semiconductors. Unlocking the full spectrum of functionality requires atomically abrupt oxide–semiconductor interfaces and intimate knowledge of their potential landscape and charge transport. In this study, we investigated the electrical properties of epitaxial SrTiO3/GaAs heterostructures by examining the band alignment and transport behavior at the interface. We employ X-ray photoelectron spectroscopy (XPS) to measure the barriers for electrons and holes across the interface and, through them, explain the transport behavior for junctions with n- and p-type GaAs. We further show qualitative evidence of the strong photoresponse of these structures, illustrating the potential of these structures in optoelectronic devices. These results establish the fundamental groundwork for utilizing these interfaces toward new devices and define their design space.
众所周知,相关氧化物具有非凡的特性,具有一系列电子、磁性、光电和光子功能。将这些特性转化为实用技术的关键因素是将氧化物与传统半导体进行有效且可扩展的集成。要实现全部功能,需要原子上突变的氧化物-半导体界面,以及对其电势分布和电荷传输的深入了解。在这项研究中,我们通过检查界面上的带排列和传输行为,研究了外延 SrTiO3/GaAs 异质结构的电学特性。我们采用 X 射线光电子能谱 (XPS) 来测量电子和空穴穿过界面的势垒,并通过它们来解释 n 型和 p 型砷化镓结的输运行为。我们还进一步展示了这些结构的强光响应的定性证据,说明了这些结构在光电器件中的潜力。这些结果为利用这些界面开发新器件奠定了基础,并界定了它们的设计空间。
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.