{"title":"Influence of crystal structure of polymorphic cotton cellulose on the adsorption and photocatalysis properties of biochar-TiO2 composites","authors":"Yueyue Song, Hui Zhang, Yaning Zhang, Wenming Li, Xiangtao Xuan, Jiale Yao","doi":"10.1007/s10570-024-06156-5","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose derived biochar can be used for adsorbent and photocatalyst mainly because of its good compatibility, high hydrophilicity, and the large amount of electron-rich hydroxy groups. Nevertheless, the impact of the crystal structure of cellulose on the absorption and photocatalytic efficiency of biochar-based composites derived from cellulose remains uncertain. Herein, four different types of biochar derived from cotton (cellulose I<sub>β</sub>, II, III, and IV) were individually impregnated with a TiO<sub>2</sub> catalyst through hydrothermal and pyrolysis processes, and were analyzed using various characterization methods. Their adsorption behavior and photocatalytic activities were compared using Congo red and methylene blue dye as the model. The analysis and test outcomes suggested that the crystal structure of cotton cellulose impacted the pore structure and TiO<sub>2</sub> content of biochar-TiO<sub>2</sub> composites to different degrees, resulting in variations in the adsorption and photocatalytic capabilities of biochar-TiO<sub>2</sub> composites. In comparison with cellulose II, III and IV, cellulose I derived biochar-TiO<sub>2</sub> composite had a large specific surface area, a more stable structure, a high aromatic carbon content, and a high TiO<sub>2</sub> loading, resulting in the strong adsorption ability and superior photoactivity to organic dyes. The adsorption and photocatalysis mechanisms were also clarified.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 15","pages":"9087 - 9110"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06156-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose derived biochar can be used for adsorbent and photocatalyst mainly because of its good compatibility, high hydrophilicity, and the large amount of electron-rich hydroxy groups. Nevertheless, the impact of the crystal structure of cellulose on the absorption and photocatalytic efficiency of biochar-based composites derived from cellulose remains uncertain. Herein, four different types of biochar derived from cotton (cellulose Iβ, II, III, and IV) were individually impregnated with a TiO2 catalyst through hydrothermal and pyrolysis processes, and were analyzed using various characterization methods. Their adsorption behavior and photocatalytic activities were compared using Congo red and methylene blue dye as the model. The analysis and test outcomes suggested that the crystal structure of cotton cellulose impacted the pore structure and TiO2 content of biochar-TiO2 composites to different degrees, resulting in variations in the adsorption and photocatalytic capabilities of biochar-TiO2 composites. In comparison with cellulose II, III and IV, cellulose I derived biochar-TiO2 composite had a large specific surface area, a more stable structure, a high aromatic carbon content, and a high TiO2 loading, resulting in the strong adsorption ability and superior photoactivity to organic dyes. The adsorption and photocatalysis mechanisms were also clarified.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.