{"title":"Recent advances in gold nanostructure-based biosensors in detecting diabetes biomarkers","authors":"Tahereh Jamshidnejad-Tosaramandani, Soheila Kashanian, Kobra Omidfar, Helgi Schiöth","doi":"10.3389/fbioe.2024.1446355","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus (DM) is a prevalent disorder with an urgent need for continuous, precise, and on-site biomarker monitoring devices. The continuous monitoring of DM biomarkers from different biological matrices will become routine in the future, thanks to the promising biosensor design. Lately, employing different nanomaterials in biosensor receptor parts has had a great impact on smart DM monitoring. Among them, gold nanostructures (AuNSs) have arisen as highly potential materials in fabricating precise DM biosensors due to their unique properties. The present study provides an update on the applications of AuNSs in biosensors for detecting glucose as well as other DM biomarkers, such as glycated hemoglobin (HbA1c), glycated albumin (GA), insulin, insulin antibodies, uric acid, lactate, and glutamic acid decarboxylase antibodies (GADA), with a focus on the most important factors in biosensor performance such as sensitivity, selectivity, response time, and stability. Specified values of limit of detection (LOD), linear concentrations, reproducibility%, recovery%, and assay time were used to compare studies. In conclusion, AuNSs, owing to the wide electrochemical potential window and low electrical resistivity, are valuable tools in biosensor design, alongside other biological reagents and/or nanomaterials.","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1446355","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus (DM) is a prevalent disorder with an urgent need for continuous, precise, and on-site biomarker monitoring devices. The continuous monitoring of DM biomarkers from different biological matrices will become routine in the future, thanks to the promising biosensor design. Lately, employing different nanomaterials in biosensor receptor parts has had a great impact on smart DM monitoring. Among them, gold nanostructures (AuNSs) have arisen as highly potential materials in fabricating precise DM biosensors due to their unique properties. The present study provides an update on the applications of AuNSs in biosensors for detecting glucose as well as other DM biomarkers, such as glycated hemoglobin (HbA1c), glycated albumin (GA), insulin, insulin antibodies, uric acid, lactate, and glutamic acid decarboxylase antibodies (GADA), with a focus on the most important factors in biosensor performance such as sensitivity, selectivity, response time, and stability. Specified values of limit of detection (LOD), linear concentrations, reproducibility%, recovery%, and assay time were used to compare studies. In conclusion, AuNSs, owing to the wide electrochemical potential window and low electrical resistivity, are valuable tools in biosensor design, alongside other biological reagents and/or nanomaterials.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.