Enabling Real-Time Conversations with Minimal Training Costs

Wang Xu, Shuo Wang, Weilin Zhao, Xu Han, Yukun Yan, Yudi Zhang, Zhe Tao, Zhiyuan Liu, Wanxiang Che
{"title":"Enabling Real-Time Conversations with Minimal Training Costs","authors":"Wang Xu, Shuo Wang, Weilin Zhao, Xu Han, Yukun Yan, Yudi Zhang, Zhe Tao, Zhiyuan Liu, Wanxiang Che","doi":"arxiv-2409.11727","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have demonstrated the ability to improve human\nefficiency through conversational interactions. Conventional LLM-powered\ndialogue systems, operating on a turn-based paradigm, preclude real-time\ninteraction during response generation. To address this limitation, researchers\nhave proposed duplex models. These models can dynamically adapt to user input,\nfacilitating real-time interactive feedback. However, these methods typically\nrequire substantial computational resources to acquire the ability. To reduce\noverhead, this paper presents a new duplex decoding approach that enhances LLMs\nwith duplex ability, requiring minimal additional training. Specifically, our\nmethod employs parallel decoding of queries and responses in conversations,\neffectively implementing a channel-division-multiplexing decoding strategy.\nExperimental results indicate that our proposed method significantly enhances\nthe naturalness and human-likeness of user-AI interactions with minimal\ntraining costs.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have demonstrated the ability to improve human efficiency through conversational interactions. Conventional LLM-powered dialogue systems, operating on a turn-based paradigm, preclude real-time interaction during response generation. To address this limitation, researchers have proposed duplex models. These models can dynamically adapt to user input, facilitating real-time interactive feedback. However, these methods typically require substantial computational resources to acquire the ability. To reduce overhead, this paper presents a new duplex decoding approach that enhances LLMs with duplex ability, requiring minimal additional training. Specifically, our method employs parallel decoding of queries and responses in conversations, effectively implementing a channel-division-multiplexing decoding strategy. Experimental results indicate that our proposed method significantly enhances the naturalness and human-likeness of user-AI interactions with minimal training costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以最低的培训成本实现实时对话
大语言模型(LLM)已证明能够通过对话互动提高人性化效率。传统的 LLM 动力对话系统采用回合制范式,不允许在生成响应时进行实时交互。为了解决这一限制,研究人员提出了双工模型。这些模型可以动态适应用户输入,促进实时交互反馈。然而,这些方法通常需要大量计算资源才能获得这种能力。为了减少开销,本文提出了一种新的双工解码方法,该方法可以增强具有双工能力的 LLM,只需最少的额外训练。实验结果表明,我们提出的方法显著增强了用户与人工智能交互的自然度和人性化,而且培训成本极低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1