Qwen2.5-Coder Technical Report

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, Junyang Lin
{"title":"Qwen2.5-Coder Technical Report","authors":"Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, Junyang Lin","doi":"arxiv-2409.12186","DOIUrl":null,"url":null,"abstract":"In this report, we introduce the Qwen2.5-Coder series, a significant upgrade\nfrom its predecessor, CodeQwen1.5. This series includes two models:\nQwen2.5-Coder-1.5B and Qwen2.5-Coder-7B. As a code-specific model,\nQwen2.5-Coder is built upon the Qwen2.5 architecture and continues pretrained\non a vast corpus of over 5.5 trillion tokens. Through meticulous data cleaning,\nscalable synthetic data generation, and balanced data mixing, Qwen2.5-Coder\ndemonstrates impressive code generation capabilities while retaining general\nversatility. The model has been evaluated on a wide range of code-related\ntasks, achieving state-of-the-art (SOTA) performance across more than 10\nbenchmarks, including code generation, completion, reasoning, and repair,\nconsistently outperforming larger models of the same model size. We believe\nthat the release of the Qwen2.5-Coder series will not only push the boundaries\nof research in code intelligence but also, through its permissive licensing,\nencourage broader adoption by developers in real-world applications.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this report, we introduce the Qwen2.5-Coder series, a significant upgrade from its predecessor, CodeQwen1.5. This series includes two models: Qwen2.5-Coder-1.5B and Qwen2.5-Coder-7B. As a code-specific model, Qwen2.5-Coder is built upon the Qwen2.5 architecture and continues pretrained on a vast corpus of over 5.5 trillion tokens. Through meticulous data cleaning, scalable synthetic data generation, and balanced data mixing, Qwen2.5-Coder demonstrates impressive code generation capabilities while retaining general versatility. The model has been evaluated on a wide range of code-related tasks, achieving state-of-the-art (SOTA) performance across more than 10 benchmarks, including code generation, completion, reasoning, and repair, consistently outperforming larger models of the same model size. We believe that the release of the Qwen2.5-Coder series will not only push the boundaries of research in code intelligence but also, through its permissive licensing, encourage broader adoption by developers in real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Qwen2.5-Coder 技术报告
在本报告中,我们介绍了 Qwen2.5-Coder 系列,这是其前身 CodeQwen1.5 的重大升级。该系列包括两个型号:Qwen2.5-Coder-1.5B 和 Qwen2.5-Coder-7B。作为一个代码专用模型,Qwen2.5-Coder 建立在 Qwen2.5 架构之上,并在超过 5.5 万亿个 token 的庞大语料库中继续进行预训练。通过细致的数据清理、可扩展的合成数据生成和均衡的数据混合,Qwen2.5-Coder 展示了令人印象深刻的代码生成能力,同时保留了通用性。该模型已在广泛的代码相关任务中进行了评估,在代码生成、补全、推理和修复等 10 多个基准测试中取得了最先进(SOTA)的性能,其性能始终优于相同模型规模的大型模型。我们相信,Qwen2.5-Coder 系列的发布不仅将推动代码智能研究的发展,而且还将通过其许可授权,鼓励开发人员在实际应用中更广泛地采用它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1