THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models

Mengfei Liang, Archish Arun, Zekun Wu, Cristian Munoz, Jonathan Lutch, Emre Kazim, Adriano Koshiyama, Philip Treleaven
{"title":"THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models","authors":"Mengfei Liang, Archish Arun, Zekun Wu, Cristian Munoz, Jonathan Lutch, Emre Kazim, Adriano Koshiyama, Philip Treleaven","doi":"arxiv-2409.11353","DOIUrl":null,"url":null,"abstract":"Hallucination, the generation of factually incorrect content, is a growing\nchallenge in Large Language Models (LLMs). Existing detection and mitigation\nmethods are often isolated and insufficient for domain-specific needs, lacking\na standardized pipeline. This paper introduces THaMES (Tool for Hallucination\nMitigations and EvaluationS), an integrated framework and library addressing\nthis gap. THaMES offers an end-to-end solution for evaluating and mitigating\nhallucinations in LLMs, featuring automated test set generation, multifaceted\nbenchmarking, and adaptable mitigation strategies. It automates test set\ncreation from any corpus, ensuring high data quality, diversity, and\ncost-efficiency through techniques like batch processing, weighted sampling,\nand counterfactual validation. THaMES assesses a model's ability to detect and\nreduce hallucinations across various tasks, including text generation and\nbinary classification, applying optimal mitigation strategies like In-Context\nLearning (ICL), Retrieval Augmented Generation (RAG), and Parameter-Efficient\nFine-tuning (PEFT). Evaluations of state-of-the-art LLMs using a knowledge base\nof academic papers, political news, and Wikipedia reveal that commercial models\nlike GPT-4o benefit more from RAG than ICL, while open-weight models like\nLlama-3.1-8B-Instruct and Mistral-Nemo gain more from ICL. Additionally, PEFT\nsignificantly enhances the performance of Llama-3.1-8B-Instruct in both\nevaluation tasks.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hallucination, the generation of factually incorrect content, is a growing challenge in Large Language Models (LLMs). Existing detection and mitigation methods are often isolated and insufficient for domain-specific needs, lacking a standardized pipeline. This paper introduces THaMES (Tool for Hallucination Mitigations and EvaluationS), an integrated framework and library addressing this gap. THaMES offers an end-to-end solution for evaluating and mitigating hallucinations in LLMs, featuring automated test set generation, multifaceted benchmarking, and adaptable mitigation strategies. It automates test set creation from any corpus, ensuring high data quality, diversity, and cost-efficiency through techniques like batch processing, weighted sampling, and counterfactual validation. THaMES assesses a model's ability to detect and reduce hallucinations across various tasks, including text generation and binary classification, applying optimal mitigation strategies like In-Context Learning (ICL), Retrieval Augmented Generation (RAG), and Parameter-Efficient Fine-tuning (PEFT). Evaluations of state-of-the-art LLMs using a knowledge base of academic papers, political news, and Wikipedia reveal that commercial models like GPT-4o benefit more from RAG than ICL, while open-weight models like Llama-3.1-8B-Instruct and Mistral-Nemo gain more from ICL. Additionally, PEFT significantly enhances the performance of Llama-3.1-8B-Instruct in both evaluation tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THaMES:大型语言模型中减少和评估幻觉的端到端工具
幻觉,即生成与事实不符的内容,是大型语言模型(LLM)中一个日益严峻的挑战。现有的检测和缓解方法往往是孤立的,不足以满足特定领域的需求,缺乏标准化的管道。本文介绍了 THaMES(Tool for HallucinationMitigations and EvaluationS,幻觉识别与评估工具),它是一个集成框架和库,可解决这一空白。THaMES 为评估和减轻 LLM 中的幻觉提供了端到端的解决方案,具有自动测试集生成、多方面基准测试和可调整的减轻策略等特点。它可以从任何语料库自动生成测试集,通过批处理、加权采样和反事实验证等技术确保数据的高质量、多样性和成本效益。THaMES 评估了模型在文本生成和二元分类等各种任务中检测和减少幻觉的能力,并应用了最佳缓解策略,如上下文学习 (ICL)、检索增强生成 (RAG) 和参数高效微调 (PEFT)。使用学术论文、政治新闻和维基百科等知识库对最先进的 LLM 进行评估后发现,GPT-4o 等商业模型从 RAG 中获得的收益比 ICL 更大,而 Llama-3.1-8B-Instruct 和 Mistral-Nemo 等开放重量模型从 ICL 中获得的收益更大。此外,PEFT 显著提高了 Llama-3.1-8B-Instruct 在双评估任务中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1