Says Who? Effective Zero-Shot Annotation of Focalization

Rebecca M. M. Hicke, Yuri Bizzoni, Pascale Feldkamp, Ross Deans Kristensen-McLachlan
{"title":"Says Who? Effective Zero-Shot Annotation of Focalization","authors":"Rebecca M. M. Hicke, Yuri Bizzoni, Pascale Feldkamp, Ross Deans Kristensen-McLachlan","doi":"arxiv-2409.11390","DOIUrl":null,"url":null,"abstract":"Focalization, the perspective through which narrative is presented, is\nencoded via a wide range of lexico-grammatical features and is subject to\nreader interpretation. Moreover, trained readers regularly disagree on\ninterpretations, suggesting that this problem may be computationally\nintractable. In this paper, we provide experiments to test how well\ncontemporary Large Language Models (LLMs) perform when annotating literary\ntexts for focalization mode. Despite the challenging nature of the task, LLMs\nshow comparable performance to trained human annotators in our experiments. We\nprovide a case study working with the novels of Stephen King to demonstrate the\nusefulness of this approach for computational literary studies, illustrating\nhow focalization can be studied at scale.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Focalization, the perspective through which narrative is presented, is encoded via a wide range of lexico-grammatical features and is subject to reader interpretation. Moreover, trained readers regularly disagree on interpretations, suggesting that this problem may be computationally intractable. In this paper, we provide experiments to test how well contemporary Large Language Models (LLMs) perform when annotating literary texts for focalization mode. Despite the challenging nature of the task, LLMs show comparable performance to trained human annotators in our experiments. We provide a case study working with the novels of Stephen King to demonstrate the usefulness of this approach for computational literary studies, illustrating how focalization can be studied at scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谁说的?聚焦的有效零点注释
聚焦是叙述呈现的视角,它通过一系列词汇语法特征进行编码,并受制于读者的解释。此外,训练有素的读者经常会在解释上出现分歧,这表明这个问题在计算上可能很棘手。在本文中,我们通过实验测试了当代大型语言模型(LLM)在注释聚焦模式文学文本时的表现。尽管这项任务极具挑战性,但在我们的实验中,LLM 的表现与训练有素的人类注释者不相上下。我们以斯蒂芬-金(Stephen King)的小说为案例,展示了这种方法在计算文学研究中的实用性,并说明了如何对聚焦进行大规模研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1