How to do impactful research in artificial intelligence for chemistry and materials science.

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-09-13 DOI:10.1039/d4fd00153b
Alan Aspuru-Guzik, Austin Cheng, Marta Skreta, Cher Tian Ser, Andres Guzman-Cordero, Luca Thiede, Andreas Burger, Sergio Pablo-García, Abdulrahman Aldossary, Shi Xuan Leong, Felix Strieth-Kalthoff
{"title":"How to do impactful research in artificial intelligence for chemistry and materials science.","authors":"Alan Aspuru-Guzik, Austin Cheng, Marta Skreta, Cher Tian Ser, Andres Guzman-Cordero, Luca Thiede, Andreas Burger, Sergio Pablo-García, Abdulrahman Aldossary, Shi Xuan Leong, Felix Strieth-Kalthoff","doi":"10.1039/d4fd00153b","DOIUrl":null,"url":null,"abstract":"Machine learning has been pervasively touching many fields of science. Chemistry and materials science are no exception. While machine learning has been making a great impact, it is still not reaching its full potential or maturity. In this perspective, we first outline the pervasive current applications. Then, we discuss how machine learning researchers view and approach problems in the field. Finally, we provide our considerations for maximizing impact when researching machine learning for chemistry.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"32 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00153b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning has been pervasively touching many fields of science. Chemistry and materials science are no exception. While machine learning has been making a great impact, it is still not reaching its full potential or maturity. In this perspective, we first outline the pervasive current applications. Then, we discuss how machine learning researchers view and approach problems in the field. Finally, we provide our considerations for maximizing impact when researching machine learning for chemistry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何在化学和材料科学领域开展有影响力的人工智能研究。
机器学习已经渗透到许多科学领域。化学和材料科学也不例外。虽然机器学习已经产生了巨大的影响,但其潜力和成熟度仍未充分发挥出来。在本视角中,我们首先概述了当前的普遍应用。然后,我们讨论机器学习研究人员如何看待和处理该领域的问题。最后,我们提出了在研究化学机器学习时如何最大限度地发挥其影响力的注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Spiers Memorial Lecture: New horizons in nanoelectrochemistry. Concluding remarks: Faraday Discussion on NMR crystallography. Analysis of uncertainty of neural fingerprint-based models. Metastable layered lithium-rich niobium and tantalum oxides via nearly instantaneous cation exchange. How to do impactful research in artificial intelligence for chemistry and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1