SciDVS: A Scientific Event Camera with 1.7% Temporal Contrast Sensitivity at 0.7 lux

Rui Graca, Sheng Zhou, Brian McReynolds, Tobi Delbruck
{"title":"SciDVS: A Scientific Event Camera with 1.7% Temporal Contrast Sensitivity at 0.7 lux","authors":"Rui Graca, Sheng Zhou, Brian McReynolds, Tobi Delbruck","doi":"arxiv-2409.09648","DOIUrl":null,"url":null,"abstract":"This paper reports a Dynamic Vision Sensor (DVS) event camera that is 6x more\nsensitive at 14x lower illumination than existing commercial and prototype\ncameras. Event cameras output a sparse stream of brightness change events.\nTheir high dynamic range (HDR), quick response, and high temporal resolution\nprovide key advantages for scientific applications that involve low lighting\nconditions and sparse visual events. However, current DVS are hindered by low\nsensitivity, resulting from shot noise and pixel-to-pixel mismatch. Commercial\nDVS have a minimum brightness change threshold of >10%. Sensitive prototypes\nachieved as low as 1%, but required kilo-lux illumination. Our SciDVS prototype\nfabricated in a 180nm CMOS image sensor process achieves 1.7% sensitivity at\nchip illumination of 0.7 lx and 18 Hz bandwidth. Novel features of SciDVS are\n(1) an auto-centering in-pixel preamplifier providing intrascene HDR and\nincreased sensitivity, (2) improved control of bandwidth to limit shot noise,\nand (3) optional pixel binning, allowing the user to trade spatial resolution\nfor sensitivity.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports a Dynamic Vision Sensor (DVS) event camera that is 6x more sensitive at 14x lower illumination than existing commercial and prototype cameras. Event cameras output a sparse stream of brightness change events. Their high dynamic range (HDR), quick response, and high temporal resolution provide key advantages for scientific applications that involve low lighting conditions and sparse visual events. However, current DVS are hindered by low sensitivity, resulting from shot noise and pixel-to-pixel mismatch. Commercial DVS have a minimum brightness change threshold of >10%. Sensitive prototypes achieved as low as 1%, but required kilo-lux illumination. Our SciDVS prototype fabricated in a 180nm CMOS image sensor process achieves 1.7% sensitivity at chip illumination of 0.7 lx and 18 Hz bandwidth. Novel features of SciDVS are (1) an auto-centering in-pixel preamplifier providing intrascene HDR and increased sensitivity, (2) improved control of bandwidth to limit shot noise, and (3) optional pixel binning, allowing the user to trade spatial resolution for sensitivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SciDVS:在 0.7 勒克斯条件下具有 1.7% 时间对比灵敏度的科学事件相机
本文报告了一种动态视觉传感器(DVS)事件相机,与现有的商用相机和原型相机相比,它在 14 倍低照度条件下的灵敏度提高了 6 倍。事件相机可输出稀疏的亮度变化事件流。它们的高动态范围(HDR)、快速响应和高时间分辨率为涉及低照度条件和稀疏视觉事件的科学应用提供了关键优势。然而,目前的 DVS 受制于拍摄噪声和像素间不匹配造成的低灵敏度。商用 DVS 的最小亮度变化阈值大于 10%。灵敏度原型可低至 1%,但需要千流明照明。我们的 SciDVS 原型采用 180nm CMOS 图像传感器工艺制造,在 0.7 lx 的芯片照明和 18 Hz 带宽条件下实现了 1.7% 的灵敏度。SciDVS 的新功能包括:(1)自动对中像素内前置放大器,提供级内 HDR 并提高灵敏度;(2)改进带宽控制以限制拍摄噪声;以及(3)可选像素分档,允许用户以空间分辨率换取灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1