Self-Prompting Polyp Segmentation in Colonoscopy using Hybrid Yolo-SAM 2 Model

Mobina Mansoori, Sajjad Shahabodini, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi
{"title":"Self-Prompting Polyp Segmentation in Colonoscopy using Hybrid Yolo-SAM 2 Model","authors":"Mobina Mansoori, Sajjad Shahabodini, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi","doi":"arxiv-2409.09484","DOIUrl":null,"url":null,"abstract":"Early diagnosis and treatment of polyps during colonoscopy are essential for\nreducing the incidence and mortality of Colorectal Cancer (CRC). However, the\nvariability in polyp characteristics and the presence of artifacts in\ncolonoscopy images and videos pose significant challenges for accurate and\nefficient polyp detection and segmentation. This paper presents a novel\napproach to polyp segmentation by integrating the Segment Anything Model (SAM\n2) with the YOLOv8 model. Our method leverages YOLOv8's bounding box\npredictions to autonomously generate input prompts for SAM 2, thereby reducing\nthe need for manual annotations. We conducted exhaustive tests on five\nbenchmark colonoscopy image datasets and two colonoscopy video datasets,\ndemonstrating that our method exceeds state-of-the-art models in both image and\nvideo segmentation tasks. Notably, our approach achieves high segmentation\naccuracy using only bounding box annotations, significantly reducing annotation\ntime and effort. This advancement holds promise for enhancing the efficiency\nand scalability of polyp detection in clinical settings\nhttps://github.com/sajjad-sh33/YOLO_SAM2.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early diagnosis and treatment of polyps during colonoscopy are essential for reducing the incidence and mortality of Colorectal Cancer (CRC). However, the variability in polyp characteristics and the presence of artifacts in colonoscopy images and videos pose significant challenges for accurate and efficient polyp detection and segmentation. This paper presents a novel approach to polyp segmentation by integrating the Segment Anything Model (SAM 2) with the YOLOv8 model. Our method leverages YOLOv8's bounding box predictions to autonomously generate input prompts for SAM 2, thereby reducing the need for manual annotations. We conducted exhaustive tests on five benchmark colonoscopy image datasets and two colonoscopy video datasets, demonstrating that our method exceeds state-of-the-art models in both image and video segmentation tasks. Notably, our approach achieves high segmentation accuracy using only bounding box annotations, significantly reducing annotation time and effort. This advancement holds promise for enhancing the efficiency and scalability of polyp detection in clinical settings https://github.com/sajjad-sh33/YOLO_SAM2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用混合 Yolo-SAM 2 模型在结肠镜检查中进行自我提示息肉分割
结肠镜检查中息肉的早期诊断和治疗对于降低结肠直肠癌(CRC)的发病率和死亡率至关重要。然而,息肉特征的多变性以及结肠镜图像和视频中伪影的存在,给准确高效的息肉检测和分割带来了巨大挑战。本文通过将 Segment Anything Model(SAM2)与 YOLOv8 模型相结合,提出了一种新颖的息肉分割方法。我们的方法利用 YOLOv8 的边界框预测来自主生成 SAM 2 的输入提示,从而减少了手动注释的需要。我们在五个基准结肠镜检查图像数据集和两个结肠镜检查视频数据集上进行了详尽的测试,结果表明我们的方法在图像和视频分割任务中都超越了最先进的模型。值得注意的是,我们的方法只使用边界框注释就能达到很高的分割精度,大大减少了注释时间和工作量。这一进步有望提高临床设置中息肉检测的效率和可扩展性https://github.com/sajjad-sh33/YOLO_SAM2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1