PiNNAcLe: Adaptive Learn-On-The-Fly Algorithm for Machine-Learning Potential

Yunqi Shao, Chao Zhang
{"title":"PiNNAcLe: Adaptive Learn-On-The-Fly Algorithm for Machine-Learning Potential","authors":"Yunqi Shao, Chao Zhang","doi":"arxiv-2409.08886","DOIUrl":null,"url":null,"abstract":"PiNNAcLe is an implementation of our adaptive learn-on-the-fly algorithm for\nrunning machine-learning potential (MLP)-based molecular dynamics (MD)\nsimulations -- an emerging approach to simulate the large-scale and long-time\ndynamics of systems where empirical forms of the PES are difficult to obtain. The algorithm aims to solve the challenge of parameterizing MLPs for\nlarge-time-scale MD simulations, by validating simulation results at adaptive\ntime intervals. This approach eliminates the need of uncertainty quantification\nmethods for labelling new data, and thus avoids the additional computational\ncost and arbitrariness thereof. The algorithm is implemented in the NextFlow workflow language (Di Tommaso et\nal., 2017). Components such as MD simulation and MLP engines are designed in a\nmodular fashion, and the workflows are agnostic to the implementation of such\nmodules. This makes it easy to apply the same algorithm to different\nreferences, as well as scaling the workflow to a variety of computational\nresources. The code is published under BSD 3-Clause License, the source code and\ndocumentation are hosted on Github. It currently supports MLP generation with\nthe atomistic machine learning package PiNN (Shao et al., 2020), electronic\nstructure calculations with CP2K (K\\\"uhne et al., 2020) and DFTB+ (Hourahine et\nal., 2020), and MD simulation with ASE (Larsen et al., 2017).","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PiNNAcLe is an implementation of our adaptive learn-on-the-fly algorithm for running machine-learning potential (MLP)-based molecular dynamics (MD) simulations -- an emerging approach to simulate the large-scale and long-time dynamics of systems where empirical forms of the PES are difficult to obtain. The algorithm aims to solve the challenge of parameterizing MLPs for large-time-scale MD simulations, by validating simulation results at adaptive time intervals. This approach eliminates the need of uncertainty quantification methods for labelling new data, and thus avoids the additional computational cost and arbitrariness thereof. The algorithm is implemented in the NextFlow workflow language (Di Tommaso et al., 2017). Components such as MD simulation and MLP engines are designed in a modular fashion, and the workflows are agnostic to the implementation of such modules. This makes it easy to apply the same algorithm to different references, as well as scaling the workflow to a variety of computational resources. The code is published under BSD 3-Clause License, the source code and documentation are hosted on Github. It currently supports MLP generation with the atomistic machine learning package PiNN (Shao et al., 2020), electronic structure calculations with CP2K (K\"uhne et al., 2020) and DFTB+ (Hourahine et al., 2020), and MD simulation with ASE (Larsen et al., 2017).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PiNNAcLe:机器学习潜能的自适应即时学习算法
PiNNAcLe 是我们用于运行基于机器学习潜能(MLP)的分子动力学(MD)模拟的自适应即时学习算法的实现,MD 模拟是一种新兴方法,用于模拟难以获得 PES 经验形式的系统的大规模和长时间段动力学。该算法旨在通过在自适应时间间隔内验证模拟结果,解决为大时间尺度 MD 模拟设置 MLP 参数的难题。这种方法无需使用不确定性量化方法来标注新数据,从而避免了额外的计算成本和任意性。该算法采用 NextFlow 工作流语言(Di Tommaso etal.)MD 模拟和 MLP 引擎等组件以模块化方式设计,工作流与这些模块的实现无关。这样就可以轻松地将相同的算法应用于不同的参考文献,并将工作流扩展到各种计算资源。代码在 BSD 3 条款许可下发布,源代码和文档托管在 Github 上。它目前支持使用原子机器学习软件包 PiNN 生成 MLP(Shao 等人,2020 年),使用 CP2K(K\"uhne 等人,2020 年)和 DFTB+ (Hourahine 等人,2020 年)进行电子结构计算,以及使用 ASE 进行 MD 模拟(Larsen 等人,2017 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1