Optimization of Coulomb Energies in Gigantic Configurational Spaces of Multi-Element Ionic Crystals

Konstantin Köster, Tobias Binninger, Payam Kaghazchi
{"title":"Optimization of Coulomb Energies in Gigantic Configurational Spaces of Multi-Element Ionic Crystals","authors":"Konstantin Köster, Tobias Binninger, Payam Kaghazchi","doi":"arxiv-2409.08808","DOIUrl":null,"url":null,"abstract":"Most of the novel energy materials contain multiple elements occupying a\nsingle site in their lattice. The exceedingly large configurational space of\nthese materials imposes challenges in determining their ground-state\nstructures. Coulomb energies of possible configurations generally show a\nsatisfactory correlation to computed energies at higher levels of theory and\nthus allow to screen for minimum-energy structures. Employing a second-order\ncluster expansion, we obtain an efficient Coulomb energy optimizer using Monte\nCarlo and Genetic Algorithms. The presented optimization package, GOAC (Global\nOptimization of Atomistic Configurations by Coulomb), can achieve a speed up of\nseveral orders of magnitude compared to existing software. Our code is able to\nfind low-energy configurations of complex systems involving up to $10^{920}$\nstructural configurations. The GOAC package thus provides an efficient method\nfor constructing ground-state atomistic models for multi-element materials with\ngigantic configurational spaces.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the novel energy materials contain multiple elements occupying a single site in their lattice. The exceedingly large configurational space of these materials imposes challenges in determining their ground-state structures. Coulomb energies of possible configurations generally show a satisfactory correlation to computed energies at higher levels of theory and thus allow to screen for minimum-energy structures. Employing a second-order cluster expansion, we obtain an efficient Coulomb energy optimizer using Monte Carlo and Genetic Algorithms. The presented optimization package, GOAC (Global Optimization of Atomistic Configurations by Coulomb), can achieve a speed up of several orders of magnitude compared to existing software. Our code is able to find low-energy configurations of complex systems involving up to $10^{920}$ structural configurations. The GOAC package thus provides an efficient method for constructing ground-state atomistic models for multi-element materials with gigantic configurational spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化多元素离子晶体巨大构型空间中的库仑能量
大多数新型能源材料都包含多个元素,占据其晶格中的单一位点。这些材料的构型空间非常大,给确定它们的基底结构带来了挑战。可能构型的库仑能量通常与更高层次理论的计算能量显示出令人满意的相关性,因此可以筛选出最小能量结构。通过二阶簇扩展,我们利用蒙特卡洛和遗传算法获得了高效的库仑能优化器。介绍的优化软件包 GOAC(库仑原子配置的全球优化)与现有软件相比,速度可以提高几个数量级。我们的代码能够找到复杂系统的低能构型,涉及多达 10^{920}$ 的结构构型。因此,GOAC 软件包为构建具有巨大构型空间的多元素材料的基态原子模型提供了一种高效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1