ES-KT-24: A Multimodal Knowledge Tracing Benchmark Dataset with Educational Game Playing Video and Synthetic Text Generation

Dohee Kim, Unggi Lee, Sookbun Lee, Jiyeong Bae, Taekyung Ahn, Jaekwon Park, Gunho Lee, Hyeoncheol Kim
{"title":"ES-KT-24: A Multimodal Knowledge Tracing Benchmark Dataset with Educational Game Playing Video and Synthetic Text Generation","authors":"Dohee Kim, Unggi Lee, Sookbun Lee, Jiyeong Bae, Taekyung Ahn, Jaekwon Park, Gunho Lee, Hyeoncheol Kim","doi":"arxiv-2409.10244","DOIUrl":null,"url":null,"abstract":"This paper introduces ES-KT-24, a novel multimodal Knowledge Tracing (KT)\ndataset for intelligent tutoring systems in educational game contexts. Although\nKT is crucial in adaptive learning, existing datasets often lack game-based and\nmultimodal elements. ES-KT-24 addresses these limitations by incorporating\neducational game-playing videos, synthetically generated question text, and\ndetailed game logs. The dataset covers Mathematics, English, Indonesian, and\nMalaysian subjects, emphasizing diversity and including non-English content.\nThe synthetic text component, generated using a large language model,\nencompasses 28 distinct knowledge concepts and 182 questions, featuring 15,032\nusers and 7,782,928 interactions. Our benchmark experiments demonstrate the\ndataset's utility for KT research by comparing Deep learning-based KT models\nwith Language Model-based Knowledge Tracing (LKT) approaches. Notably, LKT\nmodels showed slightly higher performance than traditional DKT models,\nhighlighting the potential of language model-based approaches in this field.\nFurthermore, ES-KT-24 has the potential to significantly advance research in\nmultimodal KT models and learning analytics. By integrating game-playing videos\nand detailed game logs, this dataset offers a unique approach to dissecting\nstudent learning patterns through advanced data analysis and machine-learning\ntechniques. It has the potential to unearth new insights into the learning\nprocess and inspire further exploration in the field.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces ES-KT-24, a novel multimodal Knowledge Tracing (KT) dataset for intelligent tutoring systems in educational game contexts. Although KT is crucial in adaptive learning, existing datasets often lack game-based and multimodal elements. ES-KT-24 addresses these limitations by incorporating educational game-playing videos, synthetically generated question text, and detailed game logs. The dataset covers Mathematics, English, Indonesian, and Malaysian subjects, emphasizing diversity and including non-English content. The synthetic text component, generated using a large language model, encompasses 28 distinct knowledge concepts and 182 questions, featuring 15,032 users and 7,782,928 interactions. Our benchmark experiments demonstrate the dataset's utility for KT research by comparing Deep learning-based KT models with Language Model-based Knowledge Tracing (LKT) approaches. Notably, LKT models showed slightly higher performance than traditional DKT models, highlighting the potential of language model-based approaches in this field. Furthermore, ES-KT-24 has the potential to significantly advance research in multimodal KT models and learning analytics. By integrating game-playing videos and detailed game logs, this dataset offers a unique approach to dissecting student learning patterns through advanced data analysis and machine-learning techniques. It has the potential to unearth new insights into the learning process and inspire further exploration in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ES-KT-24:包含教育游戏视频和合成文本生成的多模态知识追踪基准数据集
本文介绍了 ES-KT-24,这是一个新颖的多模态知识追踪(Knowledge Tracing,KT)数据集,用于教育游戏背景下的智能辅导系统。虽然知识追踪在自适应学习中至关重要,但现有数据集往往缺乏基于游戏的多模态元素。ES-KT-24 通过整合教育游戏视频、合成生成的问题文本和详细的游戏日志,解决了这些局限性。该数据集涵盖数学、英语、印尼语和马来西亚语科目,强调多样性并包含非英语内容。合成文本部分由大型语言模型生成,包含 28 个不同的知识概念和 182 个问题,有 15,032 名用户和 7,782,928 次互动。通过比较基于深度学习的知识跟踪模型和基于语言模型的知识跟踪(LKT)方法,我们的基准实验证明了该数据集在知识跟踪研究中的实用性。值得注意的是,LKT 模型的性能略高于传统的 DKT 模型,这凸显了基于语言模型的方法在该领域的潜力。通过整合游戏视频和详细的游戏日志,该数据集提供了一种通过先进的数据分析和机器学习技术剖析学生学习模式的独特方法。它有可能揭示学习过程的新见解,并激发该领域的进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
My Views Do Not Reflect Those of My Employer: Differences in Behavior of Organizations' Official and Personal Social Media Accounts A novel DFS/BFS approach towards link prediction Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks Skill matching at scale: freelancer-project alignment for efficient multilingual candidate retrieval "It Might be Technically Impressive, But It's Practically Useless to Us": Practices, Challenges, and Opportunities for Cross-Functional Collaboration around AI within the News Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1