A Dynamic Weighting Strategy to Mitigate Worker Node Failure in Distributed Deep Learning

Yuesheng Xu, Arielle Carr
{"title":"A Dynamic Weighting Strategy to Mitigate Worker Node Failure in Distributed Deep Learning","authors":"Yuesheng Xu, Arielle Carr","doi":"arxiv-2409.09242","DOIUrl":null,"url":null,"abstract":"The increasing complexity of deep learning models and the demand for\nprocessing vast amounts of data make the utilization of large-scale distributed\nsystems for efficient training essential. These systems, however, face\nsignificant challenges such as communication overhead, hardware limitations,\nand node failure. This paper investigates various optimization techniques in\ndistributed deep learning, including Elastic Averaging SGD (EASGD) and the\nsecond-order method AdaHessian. We propose a dynamic weighting strategy to\nmitigate the problem of straggler nodes due to failure, enhancing the\nperformance and efficiency of the overall training process. We conduct\nexperiments with different numbers of workers and communication periods to\ndemonstrate improved convergence rates and test performance using our strategy.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing complexity of deep learning models and the demand for processing vast amounts of data make the utilization of large-scale distributed systems for efficient training essential. These systems, however, face significant challenges such as communication overhead, hardware limitations, and node failure. This paper investigates various optimization techniques in distributed deep learning, including Elastic Averaging SGD (EASGD) and the second-order method AdaHessian. We propose a dynamic weighting strategy to mitigate the problem of straggler nodes due to failure, enhancing the performance and efficiency of the overall training process. We conduct experiments with different numbers of workers and communication periods to demonstrate improved convergence rates and test performance using our strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减轻分布式深度学习中工作节点故障的动态加权策略
随着深度学习模型的复杂性不断增加,以及处理海量数据的需求,利用大规模分布式系统进行高效训练变得至关重要。然而,这些系统面临着通信开销、硬件限制和节点故障等重大挑战。本文研究了分布式深度学习中的各种优化技术,包括弹性平均 SGD(EASGD)和这些二阶方法 AdaHessian。我们提出了一种动态加权策略,以解决因失效而产生的滞后节点问题,从而提高整个训练过程的性能和效率。我们使用不同的工作者数量和通信周期进行了实验,以证明使用我们的策略可以提高收敛率和测试性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1