Ying-Jia Qi, Guan-Hua Su, Chao You, Xu Zhang, Yi Xiao, Yi-Zhou Jiang, Zhi-Ming Shao
{"title":"Radiomics in breast cancer: Current advances and future directions","authors":"Ying-Jia Qi, Guan-Hua Su, Chao You, Xu Zhang, Yi Xiao, Yi-Zhou Jiang, Zhi-Ming Shao","doi":"10.1016/j.xcrm.2024.101719","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer is a common disease that causes great health concerns to women worldwide. During the diagnosis and treatment of breast cancer, medical imaging plays an essential role, but its interpretation relies on radiologists or clinical doctors. Radiomics can extract high-throughput quantitative imaging features from images of various modalities via traditional machine learning or deep learning methods following a series of standard processes. Hopefully, radiomic models may aid various processes in clinical practice. In this review, we summarize the current utilization of radiomics for predicting clinicopathological indices and clinical outcomes. We also focus on radio-multi-omics studies that bridge the gap between phenotypic and microscopic scale information. Acknowledging the deficiencies that currently hinder the clinical adoption of radiomic models, we discuss the underlying causes of this situation and propose future directions for advancing radiomics in breast cancer research.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101719","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a common disease that causes great health concerns to women worldwide. During the diagnosis and treatment of breast cancer, medical imaging plays an essential role, but its interpretation relies on radiologists or clinical doctors. Radiomics can extract high-throughput quantitative imaging features from images of various modalities via traditional machine learning or deep learning methods following a series of standard processes. Hopefully, radiomic models may aid various processes in clinical practice. In this review, we summarize the current utilization of radiomics for predicting clinicopathological indices and clinical outcomes. We also focus on radio-multi-omics studies that bridge the gap between phenotypic and microscopic scale information. Acknowledging the deficiencies that currently hinder the clinical adoption of radiomic models, we discuss the underlying causes of this situation and propose future directions for advancing radiomics in breast cancer research.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.