Joint Model Assignment and Resource Allocation for Cost-Effective Mobile Generative Services

Shuangwei Gao, Peng Yang, Yuxin Kong, Feng Lyu, Ning Zhang
{"title":"Joint Model Assignment and Resource Allocation for Cost-Effective Mobile Generative Services","authors":"Shuangwei Gao, Peng Yang, Yuxin Kong, Feng Lyu, Ning Zhang","doi":"arxiv-2409.09072","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence Generated Content (AIGC) services can efficiently\nsatisfy user-specified content creation demands, but the high computational\nrequirements pose various challenges to supporting mobile users at scale. In\nthis paper, we present our design of an edge-enabled AIGC service provisioning\nsystem to properly assign computing tasks of generative models to edge servers,\nthereby improving overall user experience and reducing content generation\nlatency. Specifically, once the edge server receives user requested task\nprompts, it dynamically assigns appropriate models and allocates computing\nresources based on features of each category of prompts. The generated contents\nare then delivered to users. The key to this system is a proposed probabilistic\nmodel assignment approach, which estimates the quality score of generated\ncontents for each prompt based on category labels. Next, we introduce a\nheuristic algorithm that enables adaptive configuration of both generation\nsteps and resource allocation, according to the various task requests received\nby each generative model on the edge.Simulation results demonstrate that the\ndesigned system can effectively enhance the quality of generated content by up\nto 4.7% while reducing response delay by up to 39.1% compared to benchmarks.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence Generated Content (AIGC) services can efficiently satisfy user-specified content creation demands, but the high computational requirements pose various challenges to supporting mobile users at scale. In this paper, we present our design of an edge-enabled AIGC service provisioning system to properly assign computing tasks of generative models to edge servers, thereby improving overall user experience and reducing content generation latency. Specifically, once the edge server receives user requested task prompts, it dynamically assigns appropriate models and allocates computing resources based on features of each category of prompts. The generated contents are then delivered to users. The key to this system is a proposed probabilistic model assignment approach, which estimates the quality score of generated contents for each prompt based on category labels. Next, we introduce a heuristic algorithm that enables adaptive configuration of both generation steps and resource allocation, according to the various task requests received by each generative model on the edge.Simulation results demonstrate that the designed system can effectively enhance the quality of generated content by up to 4.7% while reducing response delay by up to 39.1% compared to benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高成本效益移动生成服务的联合模型分配和资源分配
人工智能生成内容(AIGC)服务可以有效地满足用户指定的内容创建需求,但其高计算要求给大规模支持移动用户带来了各种挑战。在本文中,我们介绍了边缘支持的 AIGC 服务供应系统的设计,该系统可将生成模型的计算任务适当分配给边缘服务器,从而改善整体用户体验并降低内容生成延迟。具体来说,一旦边缘服务器接收到用户请求的任务提示,它就会根据每类提示的特征动态分配适当的模型和计算资源。然后将生成的内容发送给用户。该系统的关键在于所提出的概率模型分配方法,它可以根据类别标签为每个提示估算生成内容的质量分数。接下来,我们引入了一种启发式算法,根据边缘上每个生成模型收到的各种任务请求,对生成步骤和资源分配进行自适应配置。仿真结果表明,与基准相比,所设计的系统可有效提高生成内容的质量达 4.7%,同时减少响应延迟达 39.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1