3DIOC: Direct Data-Driven Inverse Optimal Control for LTI Systems

Chendi Qu, Jianping He, Xiaoming Duan
{"title":"3DIOC: Direct Data-Driven Inverse Optimal Control for LTI Systems","authors":"Chendi Qu, Jianping He, Xiaoming Duan","doi":"arxiv-2409.10884","DOIUrl":null,"url":null,"abstract":"This paper develops a direct data-driven inverse optimal control (3DIOC)\nalgorithm for the linear time-invariant (LTI) system who conducts a linear\nquadratic (LQ) control, where the underlying objective function is learned\ndirectly from measured input-output trajectories without system identification.\nBy introducing the Fundamental Lemma, we establish the input-output\nrepresentation of the LTI system. We accordingly propose a model-free\noptimality necessary condition for the forward LQ problem to build a connection\nbetween the objective function and collected data, with which the inverse\noptimal control problem is solved. We further improve the algorithm so that it\nrequires a less computation and data. Identifiability condition and\nperturbation analysis are provided. Simulations demonstrate the efficiency and\nperformance of our algorithms.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a direct data-driven inverse optimal control (3DIOC) algorithm for the linear time-invariant (LTI) system who conducts a linear quadratic (LQ) control, where the underlying objective function is learned directly from measured input-output trajectories without system identification. By introducing the Fundamental Lemma, we establish the input-output representation of the LTI system. We accordingly propose a model-free optimality necessary condition for the forward LQ problem to build a connection between the objective function and collected data, with which the inverse optimal control problem is solved. We further improve the algorithm so that it requires a less computation and data. Identifiability condition and perturbation analysis are provided. Simulations demonstrate the efficiency and performance of our algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3DIOC:LTI 系统的直接数据驱动反向最优控制
本文针对进行线性二次方(LQ)控制的线性时不变(LTI)系统开发了一种直接数据驱动的反最优控制(3DIOC)算法,该算法的基本目标函数直接从测量的输入输出轨迹中学习,无需系统识别。相应地,我们提出了前向 LQ 问题的无模型最优必要条件,从而在目标函数和收集的数据之间建立联系,并以此求解反向最优控制问题。我们进一步改进了算法,使其所需的计算量和数据量更少。我们还提供了可识别性条件和扰动分析。仿真证明了我们算法的效率和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1