Disentangling Uncertainty for Safe Social Navigation using Deep Reinforcement Learning

Daniel Flögel, Marcos Gómez Villafañe, Joshua Ransiek, Sören Hohmann
{"title":"Disentangling Uncertainty for Safe Social Navigation using Deep Reinforcement Learning","authors":"Daniel Flögel, Marcos Gómez Villafañe, Joshua Ransiek, Sören Hohmann","doi":"arxiv-2409.10655","DOIUrl":null,"url":null,"abstract":"Autonomous mobile robots are increasingly employed in pedestrian-rich\nenvironments where safe navigation and appropriate human interaction are\ncrucial. While Deep Reinforcement Learning (DRL) enables socially integrated\nrobot behavior, challenges persist in novel or perturbed scenarios to indicate\nwhen and why the policy is uncertain. Unknown uncertainty in decision-making\ncan lead to collisions or human discomfort and is one reason why safe and\nrisk-aware navigation is still an open problem. This work introduces a novel\napproach that integrates aleatoric, epistemic, and predictive uncertainty\nestimation into a DRL-based navigation framework for uncertainty estimates in\ndecision-making. We, therefore, incorporate Observation-Dependent Variance\n(ODV) and dropout into the Proximal Policy Optimization (PPO) algorithm. For\ndifferent types of perturbations, we compare the ability of Deep Ensembles and\nMonte-Carlo Dropout (MC-Dropout) to estimate the uncertainties of the policy.\nIn uncertain decision-making situations, we propose to change the robot's\nsocial behavior to conservative collision avoidance. The results show that the\nODV-PPO algorithm converges faster with better generalization and disentangles\nthe aleatoric and epistemic uncertainties. In addition, the MC-Dropout approach\nis more sensitive to perturbations and capable to correlate the uncertainty\ntype to the perturbation type better. With the proposed safe action selection\nscheme, the robot can navigate in perturbed environments with fewer collisions.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous mobile robots are increasingly employed in pedestrian-rich environments where safe navigation and appropriate human interaction are crucial. While Deep Reinforcement Learning (DRL) enables socially integrated robot behavior, challenges persist in novel or perturbed scenarios to indicate when and why the policy is uncertain. Unknown uncertainty in decision-making can lead to collisions or human discomfort and is one reason why safe and risk-aware navigation is still an open problem. This work introduces a novel approach that integrates aleatoric, epistemic, and predictive uncertainty estimation into a DRL-based navigation framework for uncertainty estimates in decision-making. We, therefore, incorporate Observation-Dependent Variance (ODV) and dropout into the Proximal Policy Optimization (PPO) algorithm. For different types of perturbations, we compare the ability of Deep Ensembles and Monte-Carlo Dropout (MC-Dropout) to estimate the uncertainties of the policy. In uncertain decision-making situations, we propose to change the robot's social behavior to conservative collision avoidance. The results show that the ODV-PPO algorithm converges faster with better generalization and disentangles the aleatoric and epistemic uncertainties. In addition, the MC-Dropout approach is more sensitive to perturbations and capable to correlate the uncertainty type to the perturbation type better. With the proposed safe action selection scheme, the robot can navigate in perturbed environments with fewer collisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度强化学习消除不确定性,实现安全的社交导航
自主移动机器人越来越多地应用于行人密集的环境中,在这种环境中,安全导航和适当的人机交互至关重要。虽然深度强化学习(DRL)能够实现机器人行为的社会整合,但在新颖或受干扰的场景中,要指明何时以及为何策略不确定,仍然存在挑战。决策中未知的不确定性可能导致碰撞或人类不适,这也是安全和风险感知导航仍是一个未决问题的原因之一。这项工作介绍了一种新方法,它将估计不确定性、认识不确定性和预测不确定性估计整合到基于 DRL 的导航框架中,用于不确定性估计的优柔寡断决策。因此,我们在近端策略优化(PPO)算法中加入了观测依赖方差(ODV)和遗漏(Dropout)。针对不同类型的扰动,我们比较了深度集合(Deep Ensembles)和蒙特卡洛剔除(Monte-Carlo Dropout,MC-Dropout)估计策略不确定性的能力。结果表明,ODV-PPO 算法收敛速度更快,泛化能力更强,并能区分不确定性和认识不确定性。此外,MC-Dropout 方法对扰动更敏感,能够更好地将不确定性类型与扰动类型相关联。利用所提出的安全行动选择方案,机器人可以在扰动环境中以更少的碰撞进行导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1