An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities

Lan Mei, Thorir Mar Ingolfsson, Cristian Cioflan, Victor Kartsch, Andrea Cossettini, Xiaying Wang, Luca Benini
{"title":"An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities","authors":"Lan Mei, Thorir Mar Ingolfsson, Cristian Cioflan, Victor Kartsch, Andrea Cossettini, Xiaying Wang, Luca Benini","doi":"arxiv-2409.10654","DOIUrl":null,"url":null,"abstract":"Driven by the progress in efficient embedded processing, there is an\naccelerating trend toward running machine learning models directly on wearable\nBrain-Machine Interfaces (BMIs) to improve portability and privacy and maximize\nbattery life. However, achieving low latency and high classification\nperformance remains challenging due to the inherent variability of\nelectroencephalographic (EEG) signals across sessions and the limited onboard\nresources. This work proposes a comprehensive BMI workflow based on a CNN-based\nContinual Learning (CL) framework, allowing the system to adapt to\ninter-session changes. The workflow is deployed on a wearable, parallel\nultra-low power BMI platform (BioGAP). Our results based on two in-house\ndatasets, Dataset A and Dataset B, show that the CL workflow improves average\naccuracy by up to 30.36% and 10.17%, respectively. Furthermore, when\nimplementing the continual learning on a Parallel Ultra-Low Power (PULP)\nmicrocontroller (GAP9), it achieves an energy consumption as low as 0.45mJ per\ninference and an adaptation time of only 21.5ms, yielding around 25h of battery\nlife with a small 100mAh, 3.7V battery on BioGAP. Our setup, coupled with the\ncompact CNN model and on-device CL capabilities, meets users' needs for\nimproved privacy, reduced latency, and enhanced inter-session performance,\noffering good promise for smart embedded real-world BMIs.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Driven by the progress in efficient embedded processing, there is an accelerating trend toward running machine learning models directly on wearable Brain-Machine Interfaces (BMIs) to improve portability and privacy and maximize battery life. However, achieving low latency and high classification performance remains challenging due to the inherent variability of electroencephalographic (EEG) signals across sessions and the limited onboard resources. This work proposes a comprehensive BMI workflow based on a CNN-based Continual Learning (CL) framework, allowing the system to adapt to inter-session changes. The workflow is deployed on a wearable, parallel ultra-low power BMI platform (BioGAP). Our results based on two in-house datasets, Dataset A and Dataset B, show that the CL workflow improves average accuracy by up to 30.36% and 10.17%, respectively. Furthermore, when implementing the continual learning on a Parallel Ultra-Low Power (PULP) microcontroller (GAP9), it achieves an energy consumption as low as 0.45mJ per inference and an adaptation time of only 21.5ms, yielding around 25h of battery life with a small 100mAh, 3.7V battery on BioGAP. Our setup, coupled with the compact CNN model and on-device CL capabilities, meets users' needs for improved privacy, reduced latency, and enhanced inter-session performance, offering good promise for smart embedded real-world BMIs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有持续学习功能的超低功耗可穿戴式 BMI 系统
在高效嵌入式处理技术进步的推动下,直接在可穿戴脑机接口(BMI)上运行机器学习模型以提高便携性和隐私性并最大限度延长电池寿命的趋势正在加速。然而,由于脑电图(EEG)信号在不同会话中固有的可变性和有限的板载资源,实现低延迟和高分类性能仍然具有挑战性。这项研究基于基于 CNN 的持续学习(CL)框架,提出了一种全面的 BMI 工作流程,使系统能够适应会话间的变化。该工作流程部署在一个可穿戴的并行超低功耗 BMI 平台(BioGAP)上。我们基于两个室内数据集(数据集 A 和数据集 B)得出的结果表明,CL 工作流将平均准确率分别提高了 30.36% 和 10.17%。此外,在并行超低功耗(PULP)微控制器(GAP9)上实现持续学习时,每次推理的能耗低至 0.45mJ,适应时间仅为 21.5ms,使用 BioGAP 上的 100mAh 3.7V 小电池可获得约 25h 的电池寿命。我们的设置加上紧凑的 CNN 模型和设备上的 CL 功能,满足了用户对提高隐私性、减少延迟和增强会话间性能的需求,为智能嵌入式实际 BMI 提供了良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1