Robust Sensor-Limited Control with Safe Input-Output Constraints for Hydraulic In-Wheel Motor Drive Mobility Systems

Mehdi Heydari Shahna, Pauli Mustalahti, Jouni Mattila
{"title":"Robust Sensor-Limited Control with Safe Input-Output Constraints for Hydraulic In-Wheel Motor Drive Mobility Systems","authors":"Mehdi Heydari Shahna, Pauli Mustalahti, Jouni Mattila","doi":"arxiv-2409.11823","DOIUrl":null,"url":null,"abstract":"In-wheel drive (IWD) systems enhance the responsiveness, traction, and\nmaintenance efficiency of vehicles by enabling each wheel to operate\nindependently. This paper proposes a novel robust torque-observed valve-based\ncontrol (RTOVC) framework to address velocity tracking in hydraulic IWDs that\nactuate heavy-duty wheeled mobile robots (HWMRs), considering such challenges\nas wheel slippages, sensor limitations, rough terrains, and modeling\nuncertainties. To overcome the sensor-dependent control systems associated with\nthe closed-loop torque/pressure in hydraulic IWD-actuated HWMRs, a robust\nobserver network based on an adaptive barrier Lyapunov function (BLF) is\nproposed to estimate the required in-wheel motor torque to track the velocity\nreferences. Then, another adaptive BLF for valve control signals is employed to\nmodulate the hydraulic fluid to generate the estimated torque for each IWD. The\nRTOVC strategy ensures user-defined safety within the logarithmic BLF framework\nby constraining the valve control signal, actual velocity, velocity tracking\nerror, and torque of each hydraulic IWD in an HWMR to avoid exceeding specified\nlimits. Despite its safety constraints, external disturbances, and modeling\nuncertainties, robustness and uniformly exponential stability of the\nRTOVC-applied hydraulic IWD mechanism are ensured in HWMRs. Experimental\ninvestigations using a 6,500-kg HWMR, actuated by four independent IWDs under\nintense disturbances and safety-defined constraints, validate the performance\nof the RTOVC.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In-wheel drive (IWD) systems enhance the responsiveness, traction, and maintenance efficiency of vehicles by enabling each wheel to operate independently. This paper proposes a novel robust torque-observed valve-based control (RTOVC) framework to address velocity tracking in hydraulic IWDs that actuate heavy-duty wheeled mobile robots (HWMRs), considering such challenges as wheel slippages, sensor limitations, rough terrains, and modeling uncertainties. To overcome the sensor-dependent control systems associated with the closed-loop torque/pressure in hydraulic IWD-actuated HWMRs, a robust observer network based on an adaptive barrier Lyapunov function (BLF) is proposed to estimate the required in-wheel motor torque to track the velocity references. Then, another adaptive BLF for valve control signals is employed to modulate the hydraulic fluid to generate the estimated torque for each IWD. The RTOVC strategy ensures user-defined safety within the logarithmic BLF framework by constraining the valve control signal, actual velocity, velocity tracking error, and torque of each hydraulic IWD in an HWMR to avoid exceeding specified limits. Despite its safety constraints, external disturbances, and modeling uncertainties, robustness and uniformly exponential stability of the RTOVC-applied hydraulic IWD mechanism are ensured in HWMRs. Experimental investigations using a 6,500-kg HWMR, actuated by four independent IWDs under intense disturbances and safety-defined constraints, validate the performance of the RTOVC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有安全输入输出约束的鲁棒传感器限制控制,适用于液压轮内电机驱动移动系统
轮内驱动(IWD)系统可使每个车轮独立运行,从而提高车辆的响应速度、牵引力和维护效率。考虑到车轮打滑、传感器限制、崎岖地形和建模不确定性等挑战,本文提出了一种新颖稳健的基于扭矩观测阀的控制(RTOVC)框架,以解决液压轮内驱动系统的速度跟踪问题,该系统可驱动重型轮式移动机器人(HWMR)。为了克服与液压 IWD 驱动的重型轮式移动机器人闭环扭矩/压力相关的传感器依赖控制系统,提出了一种基于自适应障碍李亚普诺夫函数(BLF)的鲁棒性观测网络,用于估计跟踪速度参考所需的轮内电机扭矩。然后,针对阀门控制信号采用另一个自适应 BLF 来调节液压流体,从而为每个 IWD 生成估计扭矩。RTOVC 策略通过限制阀控制信号、实际速度、速度跟踪误差和 HWMR 中每个液压 IWD 的扭矩,确保用户在对数 BLF 框架内定义的安全性,以避免超过指定的限制。尽管存在安全约束、外部干扰和建模不确定性,RTOVC 应用的液压 IWD 机构在 HWMR 中的鲁棒性和均匀指数稳定性还是得到了保证。使用一台 6,500 千克重的重型运载火箭进行的实验研究验证了 RTOVC 的性能,这台重型运载火箭由四个独立的 IWD 驱动,在强烈干扰和安全限制条件下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1