Robust Attitude Estimation with Quaternion Left-Invariant EKF and Noise Covariance Tuning

Yash Pandey, Rahul Bhattacharyya, Yatindra Nath Singh
{"title":"Robust Attitude Estimation with Quaternion Left-Invariant EKF and Noise Covariance Tuning","authors":"Yash Pandey, Rahul Bhattacharyya, Yatindra Nath Singh","doi":"arxiv-2409.11496","DOIUrl":null,"url":null,"abstract":"Accurate estimation of noise parameters is critical for optimal filter\nperformance, especially in systems where true noise parameter values are\nunknown or time-varying. This article presents a quaternion left-invariant\nextended Kalman filter (LI-EKF) for attitude estimation, integrated with an\nadaptive noise covariance estimation algorithm. By employing an iterative\nexpectation-maximization (EM) approach, the filter can effectively estimate\nboth process and measurement noise covariances. Extensive simulations\ndemonstrate the superiority of the proposed method in terms of attitude\nestimation accuracy and robustness to initial parameter misspecification. The\nadaptive LI-EKF's ability to adapt to time-varying noise characteristics makes\nit a promising solution for various applications requiring reliable attitude\nestimation, such as aerospace, robotics, and autonomous systems.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation of noise parameters is critical for optimal filter performance, especially in systems where true noise parameter values are unknown or time-varying. This article presents a quaternion left-invariant extended Kalman filter (LI-EKF) for attitude estimation, integrated with an adaptive noise covariance estimation algorithm. By employing an iterative expectation-maximization (EM) approach, the filter can effectively estimate both process and measurement noise covariances. Extensive simulations demonstrate the superiority of the proposed method in terms of attitude estimation accuracy and robustness to initial parameter misspecification. The adaptive LI-EKF's ability to adapt to time-varying noise characteristics makes it a promising solution for various applications requiring reliable attitude estimation, such as aerospace, robotics, and autonomous systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用四元数左变 EKF 和噪声协方差调整进行鲁棒姿态估计
噪声参数的准确估计对于优化滤波器性能至关重要,尤其是在噪声参数真实值未知或随时间变化的系统中。本文介绍了一种用于姿态估计的四元左变下延卡尔曼滤波器(LI-EKF),该滤波器集成了自适应噪声协方差估计算法。通过采用迭代期望最大化(EM)方法,该滤波器可以有效估计过程噪声和测量噪声协方差。大量的仿真证明,所提出的方法在姿态估计的准确性和对初始参数错误指定的鲁棒性方面具有优势。自适应 LI-EKF 能够适应时变噪声特性,这使它在航空航天、机器人和自主系统等需要可靠姿态估计的各种应用中成为一种很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1