Fault Detection and Identification via Monitoring Modules Based on Clusters of Interacting Measurements

Enrique Luna Villagomez, Vladimir Mahalec
{"title":"Fault Detection and Identification via Monitoring Modules Based on Clusters of Interacting Measurements","authors":"Enrique Luna Villagomez, Vladimir Mahalec","doi":"arxiv-2409.11444","DOIUrl":null,"url":null,"abstract":"This work introduces a novel control-aware distributed process monitoring\nmethodology based on modules comprised of clusters of interacting measurements.\nThe methodology relies on the process flow diagram (PFD) and control system\nstructure without requiring cross-correlation data to create monitoring\nmodules. The methodology is validated on the Tennessee Eastman Process\nbenchmark using full Principal Component Analysis (f-PCA) in the monitoring\nmodules. The results are comparable to nonlinear techniques implemented in a\ncentralized manner such as Kernel PCA (KPCA), Autoencoders (AE), and Recurrent\nNeural Networks (RNN), or distributed techniques like the Distributed Canonical\nCorrelation Analysis (DCCA). Temporal plots of fault detection by different\nmodules show clearly the magnitude and propagation of the fault through each\nmodule, pinpointing the module where the fault originates, and separating\ncontrollable faults from other faults. This information, combined with PCA\ncontribution plots, helps detection and identification as effectively as more\ncomplex nonlinear centralized or distributed methods.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a novel control-aware distributed process monitoring methodology based on modules comprised of clusters of interacting measurements. The methodology relies on the process flow diagram (PFD) and control system structure without requiring cross-correlation data to create monitoring modules. The methodology is validated on the Tennessee Eastman Process benchmark using full Principal Component Analysis (f-PCA) in the monitoring modules. The results are comparable to nonlinear techniques implemented in a centralized manner such as Kernel PCA (KPCA), Autoencoders (AE), and Recurrent Neural Networks (RNN), or distributed techniques like the Distributed Canonical Correlation Analysis (DCCA). Temporal plots of fault detection by different modules show clearly the magnitude and propagation of the fault through each module, pinpointing the module where the fault originates, and separating controllable faults from other faults. This information, combined with PCA contribution plots, helps detection and identification as effectively as more complex nonlinear centralized or distributed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于交互测量集群的监控模块进行故障检测和识别
该方法依赖于流程图(PFD)和控制系统结构,无需交叉相关数据即可创建监控模块。该方法在田纳西州伊士曼流程基准上进行了验证,在监控模块中使用了全主成分分析 (f-PCA)。结果可与以集中方式实施的非线性技术(如核 PCA (KPCA)、自动编码器 (AE) 和循环神经网络 (RNN))或分布式技术(如分布式典型相关分析 (DCCA))相媲美。不同模块的故障检测时序图清楚地显示了故障的严重程度和在每个模块中的传播情况,准确地指出了故障发生的模块,并将可控故障与其他故障区分开来。这些信息与 PCA 贡献图相结合,有助于检测和识别,其效果不亚于更复杂的非线性集中式或分布式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1