Spatial-Temporal Correlation Learning for Traffic Demand Prediction

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL IEEE Transactions on Intelligent Transportation Systems Pub Date : 2024-09-18 DOI:10.1109/TITS.2024.3443341
Yiling Wu;Yingping Zhao;Xinfeng Zhang;Yaowei Wang
{"title":"Spatial-Temporal Correlation Learning for Traffic Demand Prediction","authors":"Yiling Wu;Yingping Zhao;Xinfeng Zhang;Yaowei Wang","doi":"10.1109/TITS.2024.3443341","DOIUrl":null,"url":null,"abstract":"Traffic demand prediction has been drawing increasing research interest due to its critical role in intelligent transportation systems. However, conventional deep learning methods for traffic demand forecast ignore the correlations between the pick-up and drop-off demands, thus not fully exploring the patterns of demand evolution. In this work, the pick-up and drop-off demands are treated as two modalities, and an architecture is designed to explicitly model the interactions between the pick-up and drop-off demands both spatially and temporally. Specifically, the self-attention mechanism is adopted to automatically discover spatio-temporal patterns without manual designation for each demand. Then, the cross-attention mechanism is utilized to let the two demands attend to each other, resulting in information exchange between the two demands. The self-attention and cross-attention are combined to capture spatio-temporal correlations simultaneously. Finally, experiments are carried out on three real-world datasets, NYC Citi Bike, NYC Taxi, and BJ Subway, and the results show that this newly proposed method outperforms the state-of-the-art methods.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"15745-15758"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10682964/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic demand prediction has been drawing increasing research interest due to its critical role in intelligent transportation systems. However, conventional deep learning methods for traffic demand forecast ignore the correlations between the pick-up and drop-off demands, thus not fully exploring the patterns of demand evolution. In this work, the pick-up and drop-off demands are treated as two modalities, and an architecture is designed to explicitly model the interactions between the pick-up and drop-off demands both spatially and temporally. Specifically, the self-attention mechanism is adopted to automatically discover spatio-temporal patterns without manual designation for each demand. Then, the cross-attention mechanism is utilized to let the two demands attend to each other, resulting in information exchange between the two demands. The self-attention and cross-attention are combined to capture spatio-temporal correlations simultaneously. Finally, experiments are carried out on three real-world datasets, NYC Citi Bike, NYC Taxi, and BJ Subway, and the results show that this newly proposed method outperforms the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于交通需求预测的时空相关性学习
交通需求预测在智能交通系统中发挥着至关重要的作用,因此受到越来越多研究人员的关注。然而,用于交通需求预测的传统深度学习方法忽略了上下车需求之间的相关性,因此无法充分探索需求演变的规律。在这项工作中,取车需求和送车需求被视为两种模式,并设计了一种架构来明确模拟取车需求和送车需求在空间和时间上的相互作用。具体来说,采用自我关注机制来自动发现时空模式,而无需对每个需求进行人工指定。然后,利用交叉关注机制让两个需求相互关注,从而实现两个需求之间的信息交换。自我关注和交叉关注相结合,可同时捕捉时空相关性。最后,在纽约市花旗自行车、纽约市出租车和北京地铁三个真实世界数据集上进行了实验,结果表明这种新提出的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
期刊最新文献
Table of Contents IEEE Intelligent Transportation Systems Society Information Scanning the Issue IEEE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY Fine-Grained Satisfaction Analysis of In-Vehicle Infotainment Systems Using Improved Kano Model and Cumulative Prospect Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1