Ming Chen;Ratnasingham Tharmarasa;Thia Kirubarajan;Sunil Chomal
{"title":"An Assignment Method for Multiple Extended Target Tracking With Azimuth Ambiguity Based on Pseudo Measurement Set","authors":"Ming Chen;Ratnasingham Tharmarasa;Thia Kirubarajan;Sunil Chomal","doi":"10.1109/TITS.2024.3452647","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle technology is rapidly becoming the driving force in the automobile industry. As such, the interest in high-resolution radio detection and ranging (radar) for autonomous vehicle applications is increasing due to its affordability and high angular resolution. However, for Advanced Driver Assistance Systems (ADAS), the challenge of azimuth ambiguity caused by a large physical distance between radar antennas is prevalent. This causes false measurements in a direction different from the target’s true angle due to grating lobes. This challenge increases when extended targets are considered. This paper proposes a Pseudo-3D Assignment (P3DA) method based on a Pseudo Measurement Set (PMS) to resolve azimuth ambiguity in multiple extended target tracking. The proposed method can resolve mono (single) and split (duplicated) azimuth ambiguities common in extended target tracking. The proposed solution uses Lagrangian Relaxation based on a Flexible Search (LR-FS) algorithm to solve the P3DA-PMS problem efficiently. The performance of the proposed algorithm in a typical traffic scenario simulated in Unreal Engine 4, with an ego vehicle mounted with both 2D (unambiguous) and 3D (ambiguous) radars, is evaluated. Simulation and experiment results suggest that the proposed P3DA-PMS-based tracking algorithm can perform better than conventional methods.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"15512-15531"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10682602/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous vehicle technology is rapidly becoming the driving force in the automobile industry. As such, the interest in high-resolution radio detection and ranging (radar) for autonomous vehicle applications is increasing due to its affordability and high angular resolution. However, for Advanced Driver Assistance Systems (ADAS), the challenge of azimuth ambiguity caused by a large physical distance between radar antennas is prevalent. This causes false measurements in a direction different from the target’s true angle due to grating lobes. This challenge increases when extended targets are considered. This paper proposes a Pseudo-3D Assignment (P3DA) method based on a Pseudo Measurement Set (PMS) to resolve azimuth ambiguity in multiple extended target tracking. The proposed method can resolve mono (single) and split (duplicated) azimuth ambiguities common in extended target tracking. The proposed solution uses Lagrangian Relaxation based on a Flexible Search (LR-FS) algorithm to solve the P3DA-PMS problem efficiently. The performance of the proposed algorithm in a typical traffic scenario simulated in Unreal Engine 4, with an ego vehicle mounted with both 2D (unambiguous) and 3D (ambiguous) radars, is evaluated. Simulation and experiment results suggest that the proposed P3DA-PMS-based tracking algorithm can perform better than conventional methods.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.