Da Eun Shin, Nagamalleswara Rao Alluri, Kwi-Il Park
{"title":"Flexible Thermoelectric Energy Harvester with Stacked Structure of Thermoelectric Composite Films Made of PVDF and Bi2Te3-Based Particles","authors":"Da Eun Shin, Nagamalleswara Rao Alluri, Kwi-Il Park","doi":"10.1021/acsaem.4c01772","DOIUrl":null,"url":null,"abstract":"Flexible thermoelectric energy harvesters (f-TEHs) enable wearable sensors or electronic devices to be attached on curved objects with a thermal source. We demonstrated a stacked-structured f-TEH that generates thermal energy without increasing its cross-sectional area. The device consists of thermoelectric composite films fabricated by p- and n-type Bi<sub>2</sub>Te<sub>3</sub> and poly(vinylidene fluoride), Al foil and polyethylene terephthalate film. The output performance improved as the number of thermoelectric film layers (L) increased, and the L = 8 f-TEH generated maximum voltage, current, and power. Multiphysics simulations and bending tests were adopted for further investigation. This study demonstrates a distinctive configuration and comprehension of its energy generation mechanism.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c01772","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible thermoelectric energy harvesters (f-TEHs) enable wearable sensors or electronic devices to be attached on curved objects with a thermal source. We demonstrated a stacked-structured f-TEH that generates thermal energy without increasing its cross-sectional area. The device consists of thermoelectric composite films fabricated by p- and n-type Bi2Te3 and poly(vinylidene fluoride), Al foil and polyethylene terephthalate film. The output performance improved as the number of thermoelectric film layers (L) increased, and the L = 8 f-TEH generated maximum voltage, current, and power. Multiphysics simulations and bending tests were adopted for further investigation. This study demonstrates a distinctive configuration and comprehension of its energy generation mechanism.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.