Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids

Caio Fabio Oliveira da Silva, Azita Dabiri, Bart De Schutter
{"title":"Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids","authors":"Caio Fabio Oliveira da Silva, Azita Dabiri, Bart De Schutter","doi":"arxiv-2409.11267","DOIUrl":null,"url":null,"abstract":"This work proposes an approach that integrates reinforcement learning and\nmodel predictive control (MPC) to efficiently solve finite-horizon optimal\ncontrol problems in mixed-logical dynamical systems. Optimization-based control\nof such systems with discrete and continuous decision variables entails the\nonline solution of mixed-integer quadratic or linear programs, which suffer\nfrom the curse of dimensionality. Our approach aims at mitigating this issue by\neffectively decoupling the decision on the discrete variables and the decision\non the continuous variables. Moreover, to mitigate the combinatorial growth in\nthe number of possible actions due to the prediction horizon, we conceive the\ndefinition of decoupled Q-functions to make the learning problem more\ntractable. The use of reinforcement learning reduces the online optimization\nproblem of the MPC controller from a mixed-integer linear (quadratic) program\nto a linear (quadratic) program, greatly reducing the computational time.\nSimulation experiments for a microgrid, based on real-world data, demonstrate\nthat the proposed method significantly reduces the online computation time of\nthe MPC approach and that it generates policies with small optimality gaps and\nhigh feasibility rates.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes an approach that integrates reinforcement learning and model predictive control (MPC) to efficiently solve finite-horizon optimal control problems in mixed-logical dynamical systems. Optimization-based control of such systems with discrete and continuous decision variables entails the online solution of mixed-integer quadratic or linear programs, which suffer from the curse of dimensionality. Our approach aims at mitigating this issue by effectively decoupling the decision on the discrete variables and the decision on the continuous variables. Moreover, to mitigate the combinatorial growth in the number of possible actions due to the prediction horizon, we conceive the definition of decoupled Q-functions to make the learning problem more tractable. The use of reinforcement learning reduces the online optimization problem of the MPC controller from a mixed-integer linear (quadratic) program to a linear (quadratic) program, greatly reducing the computational time. Simulation experiments for a microgrid, based on real-world data, demonstrate that the proposed method significantly reduces the online computation time of the MPC approach and that it generates policies with small optimality gaps and high feasibility rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成强化学习和模型预测控制,并将其应用于微网
这项研究提出了一种整合强化学习和模型预测控制(MPC)的方法,以高效解决混合逻辑动态系统中的有限视距最优控制问题。对这类具有离散和连续决策变量的系统进行基于优化的控制,需要在线求解混合整数二次或线性程序,而这些程序都存在维数诅咒。我们的方法旨在通过有效地解耦离散变量决策和连续变量决策来缓解这一问题。此外,为了缓解由于预测范围而导致的可能行动数量的组合性增长,我们设想了去耦 Q 函数的定义,以使学习问题更加棘手。基于真实世界数据的微电网仿真实验表明,所提出的方法大大减少了 MPC 方法的在线计算时间,而且所生成的策略具有较小的最优性差距和较高的可行性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1