Reactive Environments for Active Inference Agents with RxEnvironments.jl

Wouter W. L. Nuijten, Bert de Vries
{"title":"Reactive Environments for Active Inference Agents with RxEnvironments.jl","authors":"Wouter W. L. Nuijten, Bert de Vries","doi":"arxiv-2409.11087","DOIUrl":null,"url":null,"abstract":"Active Inference is a framework that emphasizes the interaction between\nagents and their environment. While the framework has seen significant\nadvancements in the development of agents, the environmental models are often\nborrowed from reinforcement learning problems, which may not fully capture the\ncomplexity of multi-agent interactions or allow complex, conditional\ncommunication. This paper introduces Reactive Environments, a comprehensive\nparadigm that facilitates complex multi-agent communication. In this paradigm,\nboth agents and environments are defined as entities encapsulated by boundaries\nwith interfaces. This setup facilitates a robust framework for communication in\nnonequilibrium-Steady-State systems, allowing for complex interactions and\ninformation exchange. We present a Julia package RxEnvironments.jl, which is a\nspecific implementation of Reactive Environments, where we utilize a Reactive\nProgramming style for efficient implementation. The flexibility of this\nparadigm is demonstrated through its application to several complex,\nmulti-agent environments. These case studies highlight the potential of\nReactive Environments in modeling sophisticated systems of interacting agents.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Active Inference is a framework that emphasizes the interaction between agents and their environment. While the framework has seen significant advancements in the development of agents, the environmental models are often borrowed from reinforcement learning problems, which may not fully capture the complexity of multi-agent interactions or allow complex, conditional communication. This paper introduces Reactive Environments, a comprehensive paradigm that facilitates complex multi-agent communication. In this paradigm, both agents and environments are defined as entities encapsulated by boundaries with interfaces. This setup facilitates a robust framework for communication in nonequilibrium-Steady-State systems, allowing for complex interactions and information exchange. We present a Julia package RxEnvironments.jl, which is a specific implementation of Reactive Environments, where we utilize a Reactive Programming style for efficient implementation. The flexibility of this paradigm is demonstrated through its application to several complex, multi-agent environments. These case studies highlight the potential of Reactive Environments in modeling sophisticated systems of interacting agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 RxEnvironments.jl 为主动推理代理提供反应式环境
主动推理是一种强调代理与其环境之间互动的框架。虽然该框架在代理开发方面取得了重大进展,但环境模型通常借鉴自强化学习问题,可能无法完全捕捉到多代理交互的复杂性,也不允许复杂的条件通信。本文介绍了 "反应式环境"(Reactive Environments),这是一种促进复杂多代理交流的综合范式。在这一范式中,代理和环境都被定义为由带有接口的边界封装的实体。这种设置为非平衡-稳态系统中的通信提供了一个稳健的框架,允许复杂的交互和信息交换。我们提出了一个 Julia 包 RxEnvironments.jl,它是反应式环境的具体实现,我们利用反应式编程风格来高效地实现它。通过将其应用于多个复杂的多代理环境,我们展示了这一范式的灵活性。这些案例研究凸显了反应式环境在模拟复杂的交互代理系统方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1