Recurrent Graph Transformer Network for Multiple Fault Localization in Naval Shipboard Systems

Quang-Ha Ngo, Isabel Barnola, Tuyen Vu, Jianhua Zhang, Harsha Ravindra, Karl Schoder, Herbert Ginn
{"title":"Recurrent Graph Transformer Network for Multiple Fault Localization in Naval Shipboard Systems","authors":"Quang-Ha Ngo, Isabel Barnola, Tuyen Vu, Jianhua Zhang, Harsha Ravindra, Karl Schoder, Herbert Ginn","doi":"arxiv-2409.10792","DOIUrl":null,"url":null,"abstract":"The integration of power electronics building blocks in modern MVDC 12kV\nNaval ship systems enhances energy management and functionality but also\nintroduces complex fault detection and control challenges. These challenges\nstrain traditional fault diagnostic methods, making it difficult to detect and\nmanage faults across multiple locations while maintaining system stability and\nperformance. This paper proposes a temporal recurrent graph transformer network\nfor fault diagnosis in naval MVDC 12kV shipboard systems. The deep graph neural\nnetwork uses gated recurrent units to capture temporal features and a\nmulti-head attention mechanism to extract spatial features, enhancing\ndiagnostic accuracy. The approach effectively identifies and evaluates\nsuccessive multiple faults with high precision. The method is implemented and\nvalidated on the MVDC 12kV shipboard system designed by the ESDRC team,\nincorporating all key components. Results show significant improvements in\nfault localization accuracy, with a 1-4% increase in performance metrics\ncompared to other machine learning methods.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of power electronics building blocks in modern MVDC 12kV Naval ship systems enhances energy management and functionality but also introduces complex fault detection and control challenges. These challenges strain traditional fault diagnostic methods, making it difficult to detect and manage faults across multiple locations while maintaining system stability and performance. This paper proposes a temporal recurrent graph transformer network for fault diagnosis in naval MVDC 12kV shipboard systems. The deep graph neural network uses gated recurrent units to capture temporal features and a multi-head attention mechanism to extract spatial features, enhancing diagnostic accuracy. The approach effectively identifies and evaluates successive multiple faults with high precision. The method is implemented and validated on the MVDC 12kV shipboard system designed by the ESDRC team, incorporating all key components. Results show significant improvements in fault localization accuracy, with a 1-4% increase in performance metrics compared to other machine learning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于海军舰载系统多重故障定位的递归图变换器网络
在现代 MVDC 12kVNaval 船舶系统中集成电力电子模块可增强能源管理和功能,但也带来了复杂的故障检测和控制挑战。这些挑战限制了传统的故障诊断方法,使其难以在保持系统稳定性和性能的同时检测和管理多个位置的故障。本文提出了一种用于海军 MVDC 12kV 船载系统故障诊断的时序递归图变换器网络。深度图神经网络使用门控递归单元捕捉时间特征,并使用多头注意机制提取空间特征,从而提高了诊断的准确性。该方法能有效识别和评估连续多发故障,且精确度高。该方法在 ESDRC 团队设计的 MVDC 12kV 船载系统上实施并进行了验证,该系统集成了所有关键组件。结果表明,故障定位精度有了显著提高,与其他机器学习方法相比,性能指标提高了 1-4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1