Closed-loop Analysis of ADMM-based Suboptimal Linear Model Predictive Control

Anusha Srikanthan, Aren Karapetyan, Vijay Kumar, Nikolai Matni
{"title":"Closed-loop Analysis of ADMM-based Suboptimal Linear Model Predictive Control","authors":"Anusha Srikanthan, Aren Karapetyan, Vijay Kumar, Nikolai Matni","doi":"arxiv-2409.11351","DOIUrl":null,"url":null,"abstract":"Many practical applications of optimal control are subject to real-time\ncomputational constraints. When applying model predictive control (MPC) in\nthese settings, respecting timing constraints is achieved by limiting the\nnumber of iterations of the optimization algorithm used to compute control\nactions at each time step, resulting in so-called suboptimal MPC. This paper\nproposes a suboptimal MPC scheme based on the alternating direction method of\nmultipliers (ADMM). With a focus on the linear quadratic regulator problem with\nstate and input constraints, we show how ADMM can be used to split the MPC\nproblem into iterative updates of an unconstrained optimal control problem\n(with an analytical solution), and a dynamics-free feasibility step. We show\nthat using a warm-start approach combined with enough iterations per time-step,\nyields an ADMM-based suboptimal MPC scheme which asymptotically stabilizes the\nsystem and maintains recursive feasibility.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called suboptimal MPC. This paper proposes a suboptimal MPC scheme based on the alternating direction method of multipliers (ADMM). With a focus on the linear quadratic regulator problem with state and input constraints, we show how ADMM can be used to split the MPC problem into iterative updates of an unconstrained optimal control problem (with an analytical solution), and a dynamics-free feasibility step. We show that using a warm-start approach combined with enough iterations per time-step, yields an ADMM-based suboptimal MPC scheme which asymptotically stabilizes the system and maintains recursive feasibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 ADMM 的次优线性模型预测控制的闭环分析
优化控制的许多实际应用都受到实时计算的限制。在这种情况下应用模型预测控制(MPC)时,为了尊重时间限制,需要限制用于计算每个时间步控制作用的优化算法的迭代次数,这就产生了所谓的次优 MPC。本文提出了一种基于交替方向乘法(ADMM)的次优 MPC 方案。我们将重点放在有状态和输入约束的线性二次调节器问题上,展示了如何利用 ADMM 将 MPC 问题拆分为无约束最优控制问题(有解析解)的迭代更新和无动力学可行性步骤。我们证明,使用热启动方法并在每个时间步进行足够多的迭代,可以得到基于 ADMM 的次优 MPC 方案,该方案可渐近稳定系统并保持递归可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1