Protective effect of sinomenine against CCl4-induced acute liver injury through regulation of mitochondrial biogenesis

Alireza Shahmohammadi, Seyed-Mohamad-Sadegh Mirahmadi, Ali-Mohammad Rousta, Tourandokht Baluchnejadmojarad, Mehrdad Roghani
{"title":"Protective effect of sinomenine against CCl4-induced acute liver injury through regulation of mitochondrial biogenesis","authors":"Alireza Shahmohammadi, Seyed-Mohamad-Sadegh Mirahmadi, Ali-Mohammad Rousta, Tourandokht Baluchnejadmojarad, Mehrdad Roghani","doi":"10.1007/s00210-024-03448-2","DOIUrl":null,"url":null,"abstract":"<p>Carbon tetrachloride (CCl4)-provoked acute liver injury (ALI) is typified by intensified apoptotic, inflammatory, and oxidative changes besides mitochondrial dysfunction. Sinomenine is an active constituent in the medicinal plant <i>Sinomenium acutum</i>. The main objective of this study was to determine sinomenine-induced hepatoprotection following CCl4 challenge with an emphasis on unraveling the contribution of mitochondrial biogenesis-related factors. To induce ALI, CCl4 was injected <i>i.p.</i> and sinomenine was orally administered at 10, 25, and 50 mg/kg. Serum factors in relation to liver dysfunction were measured in addition to hepatic analysis of apoptotic, mitochondrial biogenesis, oxidative, and inflammatory parameters. Sinomenine pretreatment significantly lowered ALT and AST, MDA, IL-6, apoptosis intensity, and TNF-α and restored mitochondrial biogenesis besides enhancement of SOD, sirtuin-1, and AMPK. Sinomenine also conferred hepatoprotective impact, as was apparent by lower pathologic changes. These effects were accompanied by changes in gene expression for AMPK/sirtuin-1/PGC-1α/PPARγ. The current study showed sinomenine hepatoprotective impact in CCl4-induced ALI that is associated with its regulation of mitochondrial biogenesis and parallel enhancement of AMPK/sirtuin-1.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-schmiedebergs Archives of Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00210-024-03448-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon tetrachloride (CCl4)-provoked acute liver injury (ALI) is typified by intensified apoptotic, inflammatory, and oxidative changes besides mitochondrial dysfunction. Sinomenine is an active constituent in the medicinal plant Sinomenium acutum. The main objective of this study was to determine sinomenine-induced hepatoprotection following CCl4 challenge with an emphasis on unraveling the contribution of mitochondrial biogenesis-related factors. To induce ALI, CCl4 was injected i.p. and sinomenine was orally administered at 10, 25, and 50 mg/kg. Serum factors in relation to liver dysfunction were measured in addition to hepatic analysis of apoptotic, mitochondrial biogenesis, oxidative, and inflammatory parameters. Sinomenine pretreatment significantly lowered ALT and AST, MDA, IL-6, apoptosis intensity, and TNF-α and restored mitochondrial biogenesis besides enhancement of SOD, sirtuin-1, and AMPK. Sinomenine also conferred hepatoprotective impact, as was apparent by lower pathologic changes. These effects were accompanied by changes in gene expression for AMPK/sirtuin-1/PGC-1α/PPARγ. The current study showed sinomenine hepatoprotective impact in CCl4-induced ALI that is associated with its regulation of mitochondrial biogenesis and parallel enhancement of AMPK/sirtuin-1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cardioprotective effects of GPER agonist in ovariectomized diabetic rats: reversing ER stress and structural changes Laboratory and physiological aspects of substitute metazoan models for in vivo pharmacotoxicological analysis Protective effects of α-Pinene against carbon tetrachloride-induced cardiac injury in Wistar rats: modulation of antioxidant and inflammatory responses Mechanisms and effects of AdipoRon, an adiponectin receptor agonist, on ovarian granulosa cells—a systematic review Dysfunctional cardiac energy transduction, mitochondrial oxidative stress, oncogenic and apoptotic signaling in DiNP-induced asthma in murine model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1