Meihang Zhang, Hua Zhang, Wei Yan, Lin Zhang, Zhigang Jiang
{"title":"Multi-objective optimization enabling CFRP energy-efficient milling based on deep reinforcement learning","authors":"Meihang Zhang, Hua Zhang, Wei Yan, Lin Zhang, Zhigang Jiang","doi":"10.1007/s10489-024-05800-8","DOIUrl":null,"url":null,"abstract":"<div><p>The expanding application of Carbon Fiber Reinforced Polymer (CFRP) in industries is drawing increasing attention to energy efficiency improvement and cost reducing during the secondary processing, particularly in milling. Machining parameter optimization is a practical and economical way to achieve this goal. However, the unclear milling mechanism and dynamic machining conditions of CFRP make it challenging. To fill this gap, this paper proposes a DRL-based approach that integrates physics-guided Transformer networks with Twin Delayed Deep Deterministic Policy Gradient (PGTTD3) to optimize CFRP milling parameters with multi-objectives. Firstly, a PG-Transformer-based CFRP milling energy consumption model is proposed, which modifies the existing De-stationary Attention module by integrating external physical variables to enhance modeling accuracy and efficiency. Secondly, a multi-objective optimization model considering energy consumption, milling time and machining cost for CFRP milling is formulated and mapped to a Markov Decision Process, and a reward function is designed. Thirdly, a PGTTD3 approach is proposed for dynamic parameter decision-making, incorporating a time difference strategy to enhance agent training stability and online adjustment reliability. The experimental results show that the proposed method reduces energy consumption, milling time and machining cost by 10.98%, 3.012%, and 14.56% in CFRP milling respectively, compared to the actual averages. The proposed algorithm exhibits excellent performance metrics when compared to state-of-the-art optimization algorithms, with an average improvement in optimization efficiency of over 20% and a maximum enhancement of 88.66%.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 23","pages":"12531 - 12557"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05800-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The expanding application of Carbon Fiber Reinforced Polymer (CFRP) in industries is drawing increasing attention to energy efficiency improvement and cost reducing during the secondary processing, particularly in milling. Machining parameter optimization is a practical and economical way to achieve this goal. However, the unclear milling mechanism and dynamic machining conditions of CFRP make it challenging. To fill this gap, this paper proposes a DRL-based approach that integrates physics-guided Transformer networks with Twin Delayed Deep Deterministic Policy Gradient (PGTTD3) to optimize CFRP milling parameters with multi-objectives. Firstly, a PG-Transformer-based CFRP milling energy consumption model is proposed, which modifies the existing De-stationary Attention module by integrating external physical variables to enhance modeling accuracy and efficiency. Secondly, a multi-objective optimization model considering energy consumption, milling time and machining cost for CFRP milling is formulated and mapped to a Markov Decision Process, and a reward function is designed. Thirdly, a PGTTD3 approach is proposed for dynamic parameter decision-making, incorporating a time difference strategy to enhance agent training stability and online adjustment reliability. The experimental results show that the proposed method reduces energy consumption, milling time and machining cost by 10.98%, 3.012%, and 14.56% in CFRP milling respectively, compared to the actual averages. The proposed algorithm exhibits excellent performance metrics when compared to state-of-the-art optimization algorithms, with an average improvement in optimization efficiency of over 20% and a maximum enhancement of 88.66%.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.