tRNA modifications and tRNA-derived small RNAs: new insights of tRNA in human disease

IF 5.3 2区 医学 Q2 CELL BIOLOGY Cell Biology and Toxicology Pub Date : 2024-09-14 DOI:10.1007/s10565-024-09919-9
Di Wu, Xiuling Li, Faheem Ahmed Khan, Chenyang Yuan, Nuruliarizki Shinta Pandupuspitasari, Chunjie Huang, Fei Sun, Kaifeng Guan
{"title":"tRNA modifications and tRNA-derived small RNAs: new insights of tRNA in human disease","authors":"Di Wu, Xiuling Li, Faheem Ahmed Khan, Chenyang Yuan, Nuruliarizki Shinta Pandupuspitasari, Chunjie Huang, Fei Sun, Kaifeng Guan","doi":"10.1007/s10565-024-09919-9","DOIUrl":null,"url":null,"abstract":"<p>tRNAs are codon decoders that convert the transcriptome into the proteome. The field of tRNA research is excited by the increasing discovery of specific tRNA modifications that are installed at specific, evolutionarily conserved positions by a set of specialized tRNA-modifying enzymes and the biogenesis of tRNA-derived regulatory fragments (tsRNAs) which exhibit copious activities through multiple mechanisms. Dysregulation of tRNA modification usually has pathological consequences, a phenomenon referred to as \"tRNA modopathy\". Current evidence suggests that certain tRNA-modifying enzymes and tsRNAs may serve as promising diagnostic biomarkers and therapeutic targets, particularly for chemoresistant cancers. In this review, we discuss the latest discoveries that elucidate the molecular mechanisms underlying the functions of clinically relevant tRNA modifications and tsRNAs, with a focus on malignancies. We also discuss the therapeutic potential of tRNA/tsRNA-based therapies, aiming to provide insights for the development of innovative therapeutic strategies. Further efforts to unravel the complexities inherent in tRNA biology hold the promise of yielding better biomarkers for the diagnosis and prognosis of diseases, thereby advancing the development of precision medicine for health improvement.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"31 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09919-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

tRNAs are codon decoders that convert the transcriptome into the proteome. The field of tRNA research is excited by the increasing discovery of specific tRNA modifications that are installed at specific, evolutionarily conserved positions by a set of specialized tRNA-modifying enzymes and the biogenesis of tRNA-derived regulatory fragments (tsRNAs) which exhibit copious activities through multiple mechanisms. Dysregulation of tRNA modification usually has pathological consequences, a phenomenon referred to as "tRNA modopathy". Current evidence suggests that certain tRNA-modifying enzymes and tsRNAs may serve as promising diagnostic biomarkers and therapeutic targets, particularly for chemoresistant cancers. In this review, we discuss the latest discoveries that elucidate the molecular mechanisms underlying the functions of clinically relevant tRNA modifications and tsRNAs, with a focus on malignancies. We also discuss the therapeutic potential of tRNA/tsRNA-based therapies, aiming to provide insights for the development of innovative therapeutic strategies. Further efforts to unravel the complexities inherent in tRNA biology hold the promise of yielding better biomarkers for the diagnosis and prognosis of diseases, thereby advancing the development of precision medicine for health improvement.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
tRNA 修饰和 tRNA 衍生的小 RNA:对人类疾病中 tRNA 的新认识
tRNA 是将转录组转化为蛋白质组的密码子解码器。越来越多的人发现了特异性 tRNA 修饰,这些修饰由一组特异性 tRNA 修饰酶安装在特定的、进化上保守的位置上,同时还发现了 tRNA 衍生的调控片段(tsRNAs)的生物生成,这些片段通过多种机制表现出丰富的活性,从而推动了 tRNA 研究领域的发展。tRNA 修饰失调通常会导致病理后果,这种现象被称为 "tRNA 修饰病"。目前的证据表明,某些 tRNA 修饰酶和 tsRNA 可作为有前途的诊断生物标志物和治疗靶点,尤其是对化疗耐药的癌症。在这篇综述中,我们讨论了阐明临床相关 tRNA 修饰和 tsRNA 功能的分子机制的最新发现,重点是恶性肿瘤。我们还讨论了基于 tRNA/tsRNA 的疗法的治疗潜力,旨在为创新治疗策略的开发提供见解。进一步努力揭示 tRNA 生物学固有的复杂性,有望为疾病的诊断和预后提供更好的生物标志物,从而推动精准医学的发展,改善健康状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
期刊最新文献
ASPP2 deficiency attenuates lipid accumulation through the PPARγ pathway in alcoholic liver injury. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. The pivotal role of ZNF384: driving the malignant behavior of serous ovarian cancer cells via the LIN28B/UBD axis. ALKBH5 insufficiency protects against ferroptosis-driven cisplatin-induced renal cytotoxicity. Correction to: Activation of lipophagy ameliorates cadmium‑induced neural tube defects via reducing low density lipoprotein cholesterol levels in mouse placentas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1