The lysosomal membrane protein LAMP2B mediates microlipophagy to target obesity-related disorders

Ryohei Sakai, Shu Aizawa, Hyeon-Cheol Lee-Okada, Katsunori Hase, Hiromi Fujita, Hisae Kikuchi, Yukiko U. Inoue, Takayoshi Inoue, Chihana Kabuta, Takehiko Yokomizo, Tadafumi Hashimoto, Keiji Wada, Tatsuo Mano, Ikuko Koyama-Honda, Tomohiro Kabuta
{"title":"The lysosomal membrane protein LAMP2B mediates microlipophagy to target obesity-related disorders","authors":"Ryohei Sakai, Shu Aizawa, Hyeon-Cheol Lee-Okada, Katsunori Hase, Hiromi Fujita, Hisae Kikuchi, Yukiko U. Inoue, Takayoshi Inoue, Chihana Kabuta, Takehiko Yokomizo, Tadafumi Hashimoto, Keiji Wada, Tatsuo Mano, Ikuko Koyama-Honda, Tomohiro Kabuta","doi":"10.1101/2024.09.18.613587","DOIUrl":null,"url":null,"abstract":"Lifestyle diseases, such as obesity, diabetes, and metabolic syndrome, are leading health problems, most of which are related to abnormal lipid metabolism. Lysosomes can degrade lipid droplets (LDs) via microautophagy. Here, we report the molecular mechanism and pathophysiological roles of microlipophagy, regulated by the lysosomal membrane protein LAMP2B. Our study revealed that LAMP2B interacts with phosphatidic acid, facilitating lysosomal-LD interactions and enhancing lipid hydrolysis via microlipophagy depending on endosomal sorting complexes required for transport. Correlative light and electron microscopy demonstrated direct LDs uptake into lysosomes at contact sites. Moreover, LAMP2B overexpression in mice prevents high-fat diet-induced obesity, insulin resistance, and adipose tissue inflammation; liver lipidomics analysis suggested enhanced triacylglycerol hydrolysis. Overall, the findings of this study elucidated the mechanism of microlipophagy, which could be promising for the treatment of obesity and related disorders.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lifestyle diseases, such as obesity, diabetes, and metabolic syndrome, are leading health problems, most of which are related to abnormal lipid metabolism. Lysosomes can degrade lipid droplets (LDs) via microautophagy. Here, we report the molecular mechanism and pathophysiological roles of microlipophagy, regulated by the lysosomal membrane protein LAMP2B. Our study revealed that LAMP2B interacts with phosphatidic acid, facilitating lysosomal-LD interactions and enhancing lipid hydrolysis via microlipophagy depending on endosomal sorting complexes required for transport. Correlative light and electron microscopy demonstrated direct LDs uptake into lysosomes at contact sites. Moreover, LAMP2B overexpression in mice prevents high-fat diet-induced obesity, insulin resistance, and adipose tissue inflammation; liver lipidomics analysis suggested enhanced triacylglycerol hydrolysis. Overall, the findings of this study elucidated the mechanism of microlipophagy, which could be promising for the treatment of obesity and related disorders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶酶体膜蛋白 LAMP2B 介导微脂吞噬,可用于治疗肥胖相关疾病
肥胖、糖尿病和代谢综合征等生活方式疾病是主要的健康问题,其中大部分都与脂质代谢异常有关。溶酶体可以通过微自噬降解脂滴(LDs)。在此,我们报告了由溶酶体膜蛋白 LAMP2B 调控的微自噬的分子机制和病理生理作用。我们的研究发现,LAMP2B 与磷脂酸相互作用,促进溶酶体-LD 相互作用,并通过微自噬加强脂质水解,这取决于运输所需的内体分拣复合物。光镜和电子显微镜的相关研究表明,在接触部位,溶酶体会直接吸收 LDs。此外,小鼠过表达 LAMP2B 可防止高脂饮食引起的肥胖、胰岛素抵抗和脂肪组织炎症;肝脏脂质组学分析表明三酰甘油水解作用增强。总之,这项研究结果阐明了微脂吞噬的机制,有望用于治疗肥胖症及相关疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beta cell extracellular vesicle PD-L1 as a novel regulator of CD8+ T cell activity and biomarker during the evolution of Type 1 Diabetes Differential translocation of bacteriophages across the intestinal barrier in health and Crohn's disease Dynamic phosphorylation of Hcm1 promotes fitness in chronic stress Development of a cell-permeable Biotin-HaloTag ligand to explore functional differences between protein variants across cellular generations The role of disease state in confined migration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1