Leveraging Joint Spectral and Spatial Learning with MAMBA for Multichannel Speech Enhancement

Wenze Ren, Haibin Wu, Yi-Cheng Lin, Xuanjun Chen, Rong Chao, Kuo-Hsuan Hung, You-Jin Li, Wen-Yuan Ting, Hsin-Min Wang, Yu Tsao
{"title":"Leveraging Joint Spectral and Spatial Learning with MAMBA for Multichannel Speech Enhancement","authors":"Wenze Ren, Haibin Wu, Yi-Cheng Lin, Xuanjun Chen, Rong Chao, Kuo-Hsuan Hung, You-Jin Li, Wen-Yuan Ting, Hsin-Min Wang, Yu Tsao","doi":"arxiv-2409.10376","DOIUrl":null,"url":null,"abstract":"In multichannel speech enhancement, effectively capturing spatial and\nspectral information across different microphones is crucial for noise\nreduction. Traditional methods, such as CNN or LSTM, attempt to model the\ntemporal dynamics of full-band and sub-band spectral and spatial features.\nHowever, these approaches face limitations in fully modeling complex temporal\ndependencies, especially in dynamic acoustic environments. To overcome these\nchallenges, we modify the current advanced model McNet by introducing an\nimproved version of Mamba, a state-space model, and further propose MCMamba.\nMCMamba has been completely reengineered to integrate full-band and narrow-band\nspatial information with sub-band and full-band spectral features, providing a\nmore comprehensive approach to modeling spatial and spectral information. Our\nexperimental results demonstrate that MCMamba significantly improves the\nmodeling of spatial and spectral features in multichannel speech enhancement,\noutperforming McNet and achieving state-of-the-art performance on the CHiME-3\ndataset. Additionally, we find that Mamba performs exceptionally well in\nmodeling spectral information.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In multichannel speech enhancement, effectively capturing spatial and spectral information across different microphones is crucial for noise reduction. Traditional methods, such as CNN or LSTM, attempt to model the temporal dynamics of full-band and sub-band spectral and spatial features. However, these approaches face limitations in fully modeling complex temporal dependencies, especially in dynamic acoustic environments. To overcome these challenges, we modify the current advanced model McNet by introducing an improved version of Mamba, a state-space model, and further propose MCMamba. MCMamba has been completely reengineered to integrate full-band and narrow-band spatial information with sub-band and full-band spectral features, providing a more comprehensive approach to modeling spatial and spectral information. Our experimental results demonstrate that MCMamba significantly improves the modeling of spatial and spectral features in multichannel speech enhancement, outperforming McNet and achieving state-of-the-art performance on the CHiME-3 dataset. Additionally, we find that Mamba performs exceptionally well in modeling spectral information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 MAMBA 联合频谱和空间学习进行多通道语音增强
在多通道语音增强中,有效捕捉不同麦克风的空间和频谱信息对于降低噪声至关重要。CNN 或 LSTM 等传统方法试图对全频段和子频段的频谱和空间特征的时态动态进行建模。为了克服这些挑战,我们对现有的高级模型 McNet 进行了修改,引入了状态空间模型 Mamba 的改进版本,并进一步提出了 MCMamba。MCMamba 经过全新设计,将全波段和窄波段空间信息与子波段和全波段频谱特征整合在一起,为空间和频谱信息建模提供了更全面的方法。实验结果表明,MCMamba 显著改善了多通道语音增强中的空间和频谱特征建模,在 CHiME-3 数据集上的表现优于 McNet,达到了最先进的水平。此外,我们还发现 Mamba 在模拟频谱信息方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1