FakeMusicCaps: a Dataset for Detection and Attribution of Synthetic Music Generated via Text-to-Music Models

Luca Comanducci, Paolo Bestagini, Stefano Tubaro
{"title":"FakeMusicCaps: a Dataset for Detection and Attribution of Synthetic Music Generated via Text-to-Music Models","authors":"Luca Comanducci, Paolo Bestagini, Stefano Tubaro","doi":"arxiv-2409.10684","DOIUrl":null,"url":null,"abstract":"Text-To-Music (TTM) models have recently revolutionized the automatic music\ngeneration research field. Specifically, by reaching superior performances to\nall previous state-of-the-art models and by lowering the technical proficiency\nneeded to use them. Due to these reasons, they have readily started to be\nadopted for commercial uses and music production practices. This widespread\ndiffusion of TTMs poses several concerns regarding copyright violation and\nrightful attribution, posing the need of serious consideration of them by the\naudio forensics community. In this paper, we tackle the problem of detection\nand attribution of TTM-generated data. We propose a dataset, FakeMusicCaps that\ncontains several versions of the music-caption pairs dataset MusicCaps\nre-generated via several state-of-the-art TTM techniques. We evaluate the\nproposed dataset by performing initial experiments regarding the detection and\nattribution of TTM-generated audio.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text-To-Music (TTM) models have recently revolutionized the automatic music generation research field. Specifically, by reaching superior performances to all previous state-of-the-art models and by lowering the technical proficiency needed to use them. Due to these reasons, they have readily started to be adopted for commercial uses and music production practices. This widespread diffusion of TTMs poses several concerns regarding copyright violation and rightful attribution, posing the need of serious consideration of them by the audio forensics community. In this paper, we tackle the problem of detection and attribution of TTM-generated data. We propose a dataset, FakeMusicCaps that contains several versions of the music-caption pairs dataset MusicCaps re-generated via several state-of-the-art TTM techniques. We evaluate the proposed dataset by performing initial experiments regarding the detection and attribution of TTM-generated audio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FakeMusicCaps:通过文本到音乐模型生成的合成音乐的检测和归属数据集
文本到音乐(TTM)模型最近在自动音乐生成研究领域掀起了一场革命。具体来说,TTM 模型的性能优于以往所有最先进的模型,而且降低了使用这些模型所需的技术熟练度。由于这些原因,它们已开始被商业用途和音乐制作实践所采用。TTM 的广泛应用带来了一些有关侵犯版权和合法归属的问题,需要音频取证界认真考虑。在本文中,我们探讨了 TTM 生成数据的检测和归属问题。我们提出了一个名为 "FakeMusicCaps "的数据集,其中包含通过几种最先进的 TTM 技术生成的多个版本的音乐字幕对数据集 MusicCaps。我们通过对 TTM 生成的音频进行检测和归属的初步实验,对所提出的数据集进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1