The Sounds of Home: A Speech-Removed Residential Audio Dataset for Sound Event Detection

Gabriel Bibbó, Thomas Deacon, Arshdeep Singh, Mark D. Plumbley
{"title":"The Sounds of Home: A Speech-Removed Residential Audio Dataset for Sound Event Detection","authors":"Gabriel Bibbó, Thomas Deacon, Arshdeep Singh, Mark D. Plumbley","doi":"arxiv-2409.11262","DOIUrl":null,"url":null,"abstract":"This paper presents a residential audio dataset to support sound event\ndetection research for smart home applications aimed at promoting wellbeing for\nolder adults. The dataset is constructed by deploying audio recording systems\nin the homes of 8 participants aged 55-80 years for a 7-day period. Acoustic\ncharacteristics are documented through detailed floor plans and construction\nmaterial information to enable replication of the recording environments for AI\nmodel deployment. A novel automated speech removal pipeline is developed, using\npre-trained audio neural networks to detect and remove segments containing\nspoken voice, while preserving segments containing other sound events. The\nresulting dataset consists of privacy-compliant audio recordings that\naccurately capture the soundscapes and activities of daily living within\nresidential spaces. The paper details the dataset creation methodology, the\nspeech removal pipeline utilizing cascaded model architectures, and an analysis\nof the vocal label distribution to validate the speech removal process. This\ndataset enables the development and benchmarking of sound event detection\nmodels tailored specifically for in-home applications.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a residential audio dataset to support sound event detection research for smart home applications aimed at promoting wellbeing for older adults. The dataset is constructed by deploying audio recording systems in the homes of 8 participants aged 55-80 years for a 7-day period. Acoustic characteristics are documented through detailed floor plans and construction material information to enable replication of the recording environments for AI model deployment. A novel automated speech removal pipeline is developed, using pre-trained audio neural networks to detect and remove segments containing spoken voice, while preserving segments containing other sound events. The resulting dataset consists of privacy-compliant audio recordings that accurately capture the soundscapes and activities of daily living within residential spaces. The paper details the dataset creation methodology, the speech removal pipeline utilizing cascaded model architectures, and an analysis of the vocal label distribution to validate the speech removal process. This dataset enables the development and benchmarking of sound event detection models tailored specifically for in-home applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
家的声音用于声音事件检测的语音去除住宅音频数据集
本文介绍了一个住宅音频数据集,用于支持智能家居应用的声音事件检测研究,旨在提高老年人的健康水平。该数据集是通过在 8 位 55-80 岁的参与者家中部署音频录音系统构建的,为期 7 天。通过详细的平面图和建筑材料信息记录了声学特征,以便为人工智能模型的部署复制录音环境。利用预先训练的音频神经网络,开发了一种新型的自动语音移除管道,用于检测和移除包含语音的片段,同时保留包含其他声音事件的片段。由此产生的数据集由符合隐私标准的音频记录组成,准确捕捉了住宅空间内的声音景观和日常生活活动。论文详细介绍了数据集创建方法、利用级联模型架构的语音移除管道,以及对人声标签分布的分析,以验证语音移除过程。通过该数据集,可以开发专门针对家庭应用的声音事件检测模型,并对其进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1