Speech Recognition for Analysis of Police Radio Communication

Tejes Srivastava, Ju-Chieh Chou, Priyank Shroff, Karen Livescu, Christopher Graziul
{"title":"Speech Recognition for Analysis of Police Radio Communication","authors":"Tejes Srivastava, Ju-Chieh Chou, Priyank Shroff, Karen Livescu, Christopher Graziul","doi":"arxiv-2409.10858","DOIUrl":null,"url":null,"abstract":"Police departments around the world use two-way radio for coordination. These\nbroadcast police communications (BPC) are a unique source of information about\neveryday police activity and emergency response. Yet BPC are not transcribed,\nand their naturalistic audio properties make automatic transcription\nchallenging. We collect a corpus of roughly 62,000 manually transcribed radio\ntransmissions (~46 hours of audio) to evaluate the feasibility of automatic\nspeech recognition (ASR) using modern recognition models. We evaluate the\nperformance of off-the-shelf speech recognizers, models fine-tuned on BPC data,\nand customized end-to-end models. We find that both human and machine\ntranscription is challenging in this domain. Large off-the-shelf ASR models\nperform poorly, but fine-tuned models can reach the approximate range of human\nperformance. Our work suggests directions for future work, including analysis\nof short utterances and potential miscommunication in police radio\ninteractions. We make our corpus and data annotation pipeline available to\nother researchers, to enable further research on recognition and analysis of\npolice communication.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Police departments around the world use two-way radio for coordination. These broadcast police communications (BPC) are a unique source of information about everyday police activity and emergency response. Yet BPC are not transcribed, and their naturalistic audio properties make automatic transcription challenging. We collect a corpus of roughly 62,000 manually transcribed radio transmissions (~46 hours of audio) to evaluate the feasibility of automatic speech recognition (ASR) using modern recognition models. We evaluate the performance of off-the-shelf speech recognizers, models fine-tuned on BPC data, and customized end-to-end models. We find that both human and machine transcription is challenging in this domain. Large off-the-shelf ASR models perform poorly, but fine-tuned models can reach the approximate range of human performance. Our work suggests directions for future work, including analysis of short utterances and potential miscommunication in police radio interactions. We make our corpus and data annotation pipeline available to other researchers, to enable further research on recognition and analysis of police communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分析警用无线电通信的语音识别技术
世界各地的警察部门都使用双向无线电进行协调。这些广播警务通信(BPC)是有关日常警务活动和应急响应的独特信息来源。然而,BPC 并没有转录,其自然的音频特性给自动转录带来了挑战。我们收集了大约 62,000 个人工转录的无线电传输语料库(约 46 小时的音频),以评估使用现代识别模型进行自动语音识别 (ASR) 的可行性。我们评估了现成的语音识别器、根据 BPC 数据微调的模型以及定制的端到端模型的性能。我们发现,在这一领域,人工和机器转写都具有挑战性。现成的大型 ASR 模型表现不佳,但经过微调的模型可以达到人类表现的大致范围。我们的工作为未来的工作指明了方向,包括分析短语和警方无线电互动中潜在的误传。我们向其他研究人员提供我们的语料库和数据注释管道,以便进一步研究警察交流的识别和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1