Fan Wang, Gui-zhi Xiao, De-ning Zou, Kai-xin Zhang, Xiao-ming Zhang, Yang Li, Li-bo Tong, Yi-cheng Jiang, Bo Song
{"title":"Effect of Nb on high-temperature oxidation of austenitic stainless steel at 850 °C","authors":"Fan Wang, Gui-zhi Xiao, De-ning Zou, Kai-xin Zhang, Xiao-ming Zhang, Yang Li, Li-bo Tong, Yi-cheng Jiang, Bo Song","doi":"10.1007/s42243-024-01297-0","DOIUrl":null,"url":null,"abstract":"<p>The effects of niobium on the high-temperature oxidation resistance of austenitic stainless steel were systematically investigated. Two austenitic stainless steels with different Nb contents were prepared and exposed to air at 850 °C for 200 h. Results show that Nb positively affects the high-temperature oxidation resistance of austenitic stainless steels. The matrix organization of austenitic stainless steels with added niobium does not change, while the austenitic grain size is significantly refined, and it also promoted the release of internal stresses in the oxide film, which in turn improved the integrity of the oxide film and adhesion to the substrate. In addition, with the addition of Nb element, a large number of Nb(C, N) particles are diffusely distributed in the matrix. Nb(C, N) phase distributed in the matrix and the niobium-rich layer formed by the diffusion of niobium into the interface between the metal matrix and the oxide film during the high-temperature oxidation process effectively prevents the diffusion of iron into the outer layer and enhances the oxidation resistance at high temperatures.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"21 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01297-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of niobium on the high-temperature oxidation resistance of austenitic stainless steel were systematically investigated. Two austenitic stainless steels with different Nb contents were prepared and exposed to air at 850 °C for 200 h. Results show that Nb positively affects the high-temperature oxidation resistance of austenitic stainless steels. The matrix organization of austenitic stainless steels with added niobium does not change, while the austenitic grain size is significantly refined, and it also promoted the release of internal stresses in the oxide film, which in turn improved the integrity of the oxide film and adhesion to the substrate. In addition, with the addition of Nb element, a large number of Nb(C, N) particles are diffusely distributed in the matrix. Nb(C, N) phase distributed in the matrix and the niobium-rich layer formed by the diffusion of niobium into the interface between the metal matrix and the oxide film during the high-temperature oxidation process effectively prevents the diffusion of iron into the outer layer and enhances the oxidation resistance at high temperatures.
系统研究了铌对奥氏体不锈钢高温抗氧化性的影响。结果表明,铌对奥氏体不锈钢的高温抗氧化性有积极影响。添加了铌的奥氏体不锈钢的基体组织没有发生变化,而奥氏体晶粒尺寸则显著细化,同时还促进了氧化膜内应力的释放,进而改善了氧化膜的完整性和与基体的粘附性。此外,随着 Nb 元素的加入,大量 Nb(C,N)颗粒在基体中弥散分布。分布在基体中的 Nb(C,N)相以及高温氧化过程中铌扩散到金属基体和氧化膜之间的界面所形成的富铌层,有效地阻止了铁向外层的扩散,增强了高温下的抗氧化性。
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..