Next generation yellow fever vaccine induces an equivalent immune and transcriptomic profile to the current vaccine: observations from a phase I randomised clinical trial.

IF 9.7 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EBioMedicine Pub Date : 2024-09-17 DOI:10.1016/j.ebiom.2024.105332
Anke Pagnon,Christophe Carre,Marion Aguirre,Emilie Chautard,Sophie Gimenez,Franck Raynal,Emmanuel Feroldi,Paul Scott,Kayvon Modjarrad,Manuel Vangelisti,Nathalie Mantel
{"title":"Next generation yellow fever vaccine induces an equivalent immune and transcriptomic profile to the current vaccine: observations from a phase I randomised clinical trial.","authors":"Anke Pagnon,Christophe Carre,Marion Aguirre,Emilie Chautard,Sophie Gimenez,Franck Raynal,Emmanuel Feroldi,Paul Scott,Kayvon Modjarrad,Manuel Vangelisti,Nathalie Mantel","doi":"10.1016/j.ebiom.2024.105332","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nYellow fever (YF), a mosquito-borne acute viral haemorrhagic illness, is endemic to many tropical and subtropical areas of Africa and Central and South America. Vaccination remains the most effective prevention strategy; however, as repeated outbreaks have exhausted vaccine stockpiles, there is a need for improved YF vaccines to meet global demand. A live-attenuated YF vaccine candidate (referred to as vYF) cloned from a YF-17D vaccine (YF-VAX®) sub-strain, adapted for growth in Vero cells cultured in serum-free media, is in clinical development. We report the innate and adaptive immune responses and the transcriptome profile of selected genes induced by vYF.\r\n\r\nMETHODS\r\nHealthy adults aged 18-60 years were randomised at a 1:1:1:1 ratio to receive one dose of vYF at 4, 5 or 6 Log CCID50 or YF-VAX (reference vaccine), administered subcutaneously in the upper arm (ClinicalTrials.gov identifier: NCT04142086). Blood/serum samples were obtained at scheduled time points through 180 days (D180) post-vaccination. The surrogate endpoints assessed were: serum cytokine/chemokine concentrations, measured by bead-based Multiplex assay; peripheral blood vYF-specific IgG and IgM memory B cell frequencies, measured by FluoroSpot assay; and expression of genes involved in the immune response to YF-17D vaccination by RT-qPCR.\r\n\r\nFINDINGS\r\nThere was no increase in any of the cytokine/chemokine concentrations assessed through D14 following vaccination with vYF or YF-VAX, except for a slight increase in IP-10 (CXCL10) levels. The gene expression profiles and kinetics following vaccination with vYF and YF-VAX were similar, inclusive of innate (antiviral responses [type-1 interferon, IFN signal transduction; interferon-stimulated genes], activated dendritic cells, viral sensing pattern recognition receptors) and adaptive (cell division in stimulated CD4+ T cells, B cell and antibody) immune signatures, which peaked at D7 and D14, respectively. Increases in vYF-specific IgG and IgM memory B cell frequencies at D28 and D180 were similar across the study groups.\r\n\r\nINTERPRETATION\r\nvYF-induced strong innate and adaptive immune responses comparable to those induced by YF-VAX, with similar transcriptomic and kinetic profiles observed.\r\n\r\nFUNDING\r\nSanofi.","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105332","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND Yellow fever (YF), a mosquito-borne acute viral haemorrhagic illness, is endemic to many tropical and subtropical areas of Africa and Central and South America. Vaccination remains the most effective prevention strategy; however, as repeated outbreaks have exhausted vaccine stockpiles, there is a need for improved YF vaccines to meet global demand. A live-attenuated YF vaccine candidate (referred to as vYF) cloned from a YF-17D vaccine (YF-VAX®) sub-strain, adapted for growth in Vero cells cultured in serum-free media, is in clinical development. We report the innate and adaptive immune responses and the transcriptome profile of selected genes induced by vYF. METHODS Healthy adults aged 18-60 years were randomised at a 1:1:1:1 ratio to receive one dose of vYF at 4, 5 or 6 Log CCID50 or YF-VAX (reference vaccine), administered subcutaneously in the upper arm (ClinicalTrials.gov identifier: NCT04142086). Blood/serum samples were obtained at scheduled time points through 180 days (D180) post-vaccination. The surrogate endpoints assessed were: serum cytokine/chemokine concentrations, measured by bead-based Multiplex assay; peripheral blood vYF-specific IgG and IgM memory B cell frequencies, measured by FluoroSpot assay; and expression of genes involved in the immune response to YF-17D vaccination by RT-qPCR. FINDINGS There was no increase in any of the cytokine/chemokine concentrations assessed through D14 following vaccination with vYF or YF-VAX, except for a slight increase in IP-10 (CXCL10) levels. The gene expression profiles and kinetics following vaccination with vYF and YF-VAX were similar, inclusive of innate (antiviral responses [type-1 interferon, IFN signal transduction; interferon-stimulated genes], activated dendritic cells, viral sensing pattern recognition receptors) and adaptive (cell division in stimulated CD4+ T cells, B cell and antibody) immune signatures, which peaked at D7 and D14, respectively. Increases in vYF-specific IgG and IgM memory B cell frequencies at D28 and D180 were similar across the study groups. INTERPRETATION vYF-induced strong innate and adaptive immune responses comparable to those induced by YF-VAX, with similar transcriptomic and kinetic profiles observed. FUNDING Sanofi.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
期刊最新文献
Phosphoproteomics predict response to midostaurin plus chemotherapy in independent cohorts of FLT3-mutated acute myeloid leukaemia. Next generation yellow fever vaccine induces an equivalent immune and transcriptomic profile to the current vaccine: observations from a phase I randomised clinical trial. Parsimonious immune-response endotypes and global outcome in patients with traumatic brain injury. Super-resolution ultrasound imaging reveals temporal cerebrovascular changes with disease progression in female 5×FAD mouse model of Alzheimer's disease: correlation with pathological impairments. Development and validation of an open-source pipeline for automatic population of case report forms from electronic health records: a pediatric multi-center prospective study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1