Hybrid Powder-Based Additive Manufacturing of Laser-Induced Graphene 3D Architectures with Tunable Porous Microstructures from Waste Sources of Black Liquor and White Pollution
Yan Gao, Yanan Wang, Yujie Cao, Yajie Hu, Guantao Wang, Mingguang Han, Sida Luo
{"title":"Hybrid Powder-Based Additive Manufacturing of Laser-Induced Graphene 3D Architectures with Tunable Porous Microstructures from Waste Sources of Black Liquor and White Pollution","authors":"Yan Gao, Yanan Wang, Yujie Cao, Yajie Hu, Guantao Wang, Mingguang Han, Sida Luo","doi":"10.1002/adsu.202400565","DOIUrl":null,"url":null,"abstract":"<p>Macroscopic 3D-controllable graphene (3D-CG) architectures not only retain the intrinsic properties of graphene sheets but also exhibit structural advantages for pollutant adsorption and energy storage. This paper proposes a novel hybrid powder-based additive manufacturing method to fabricate 3D biomass-derived laser-induced graphene (3D B-LIG) structures with customizable geometries and microporous features. This method utilizes two waste sources as feedstock precursors for sustainable graphene production: “black liquor” (sodium lignosulfonate, NaLS) and “white pollution” (polypropylene, PP). Employing a computer-aided design process, this method allows for the synchronous creation of various freeform macrostructures, with either identical or variable sections. To optimize the formability and processing efficiency of 3D B-LIG, systematic studies have been conducted. These studies establish the relationship between processing parameters and the resulting structures by controlling the laser parameters and the mixing ratio of NaLS and PP. By leveraging tunable microporous structures with a maximized specific surface area of 485.3 m<sup>2</sup> g<sup>−1</sup>, 3D B-LIG demonstrates exceptional performance in pollutant adsorption (with a maximum adsorption capacity of 283.3 mg g<sup>−1</sup> for methylene blue) and energy storage (with a gravimetric specific capacitance value of 194.9 F g<sup>−1</sup>).</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400565","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macroscopic 3D-controllable graphene (3D-CG) architectures not only retain the intrinsic properties of graphene sheets but also exhibit structural advantages for pollutant adsorption and energy storage. This paper proposes a novel hybrid powder-based additive manufacturing method to fabricate 3D biomass-derived laser-induced graphene (3D B-LIG) structures with customizable geometries and microporous features. This method utilizes two waste sources as feedstock precursors for sustainable graphene production: “black liquor” (sodium lignosulfonate, NaLS) and “white pollution” (polypropylene, PP). Employing a computer-aided design process, this method allows for the synchronous creation of various freeform macrostructures, with either identical or variable sections. To optimize the formability and processing efficiency of 3D B-LIG, systematic studies have been conducted. These studies establish the relationship between processing parameters and the resulting structures by controlling the laser parameters and the mixing ratio of NaLS and PP. By leveraging tunable microporous structures with a maximized specific surface area of 485.3 m2 g−1, 3D B-LIG demonstrates exceptional performance in pollutant adsorption (with a maximum adsorption capacity of 283.3 mg g−1 for methylene blue) and energy storage (with a gravimetric specific capacitance value of 194.9 F g−1).
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.